Scaling Deep-Learning Inference with Chiplet-based
Architecture and Photonic Interconnects

Yuan Li*, Ahmed Louri*, Avinash Karanth'
*Department of Electrical and Computer Engineering, George Washington University, Washington, DC, USA
tSchool of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio, USA
Emails: *{liyuan5859, louri} @ gwu.edu, tkaranth @ ohio.edu

Abstract—Chiplet-based architectures have been proposed to
scale computing systems for deep neural networks (DNNs). Prior
work has shown that for the chiplet-based DNN accelerators, the
electrical network connecting the chiplets poses a major challenge
to system performance, energy consumption, and scalability.
Some emerging interconnect technologies such as silicon pho-
tonics can potentially overcome the challenges facing electrical
interconnects as photonic interconnects provide high bandwidth
density, superior energy efficiency, and ease of implementing
broadcast and multicast operations that are prevalent in DNN
inference. In this paper, we propose a chiplet-based architecture
named SPRINT for DNN inference. SPRINT uses a global
buffer to simplify the data transmission between storage and
computation, and includes two novel designs: (1) a reconfigurable
photonic network that can support diverse communications in
DNN inference with minimal implementation cost, and (2) a
customized dataflow that exploits the ease of broadcast and
multicast feature of photonic interconnects to support highly
parallel DNN computations. Simulation studies using ResNet-
50 DNN model show that SPRINT achieves 46% and 61%
execution time and energy consumption reduction, respectively,
as compared to other state-of-the-art chiplet-based architectures
with electrical or photonic interconnects.

Keywords—chiplet, accelerator, silicon photonics, deep learning

I. INTRODUCTION

Modern deep neural networks (DNNs) achieve high inference
accuracy by increasing their model size [1]-[4]. As the model
size exceeds the computation and storage capacity of one single
chip, the chiplet-based architectures [5]-[7] have been shown
to be a viable approach to scale up the system. However, for
such chiplet-based DNN accelerators, the electrical inter-chiplet
network poses a major challenge to system performance, energy
consumption, and scalability.

The emerging silicon photonics technology has the po-
tential to improve bandwidth density, energy efficiency, and
overall performance of chiplet-based architectures [8]—[12].
The distance-independent property of photonics allows similar
energy consumption for data transmission to different chiplets,
albeit with marginal timing variations. This simplifies energy
and timing constraints for DNN inference since data can be
transmitted simultaneously without complex orchestration as
required in electrical networks. Further, photonic interconnects
have the capability of adequately supporting a multitude of
communications such as one-to-many (multicast) and one-to-
all (broadcast) which are prevalent in DNN inference. While
there have been a few chiplet-based architectures with photonic

978-1-6654-3274-0/21/$31.00 ©2021 IEEE

interconnects [8], [11], they often provide full connectivity and
uniform bandwidth between chiplets via crossbar interconnects
for all-to-all communication. Such crossbar-based networks are
costly and difficult to scale for larger systems.

In this paper, we propose SPRINT - a chiplet-based archi-
tecture with Silicon Photonic Reconfigurable INTerconnects
for DNN inference applications. SPRINT includes two novel
designs: (1) a reconfigurable photonic inter-chiplet network that
connects the global buffer (GB) and other accelerator chiplets
and supports diverse communications in DNN inference, and
(2) a customized dataflow that exploits the ease of broadcast and
multicast feature of photonic interconnects to support highly
parallel DNN computations. Specifically, the GB simplifies the
all-to-all communication [5] into three categories: unicast com-
munication from the GB to other accelerator chiplets for weight
transmission, multicast or broadcast communication from the
GB to other accelerator chiplets for input activation (IA)
transmission, and unicast communication from each accelerator
chiplet to the GB for partial sum transmission. The proposed
photonic inter-chiplet network is carefully designed to support
all three communication categories with minimal overhead
through network reconfiguration. We compare SPRINT with
other state-of-the-art chiplet-based architectures [5], [8] with
either electrical or photonic inter-chiplet interconnects using
the ResNet-50 DNN model [1]. Simulation studies show that
SPRINT achieves 46% and 61% reduction in execution time
and energy consumption, respectively. SPRINT also exhibits
better scalability as the number of accelerator chiplets increases.

II. SPRINT ARCHITECTURE

A. Architecture Overview

Fig. 1 presents a small-scale SPRINT architecture with a GB,
four accelerator chiplets, and a photonic inter-chiplet network
implemented on a photonic interposer.

GB: The GB is implemented on a separate silicon die.
It includes four modules: GB memory banks for temporary
data storage, a computing engine to perform non-convolution
operations (e.g., bias, activation, pooling, etc.), peripheral
circuitries of transmitters and receivers that interact with
corresponding photonic components on the photonic interposer,
and a near-data accumulation engine (NAE). NAE takes the
partial sums received from accelerator chiplets as inputs and
performs partial sum accumulation operations. The outputs

Global Buffer (GB) Chiplet 0 Chiplet 1 Chiplet 2 Chiplet 3)
GB Memory E g Eﬁlzﬂ Q g ; % é E ; D E ; D Eiﬁ%ﬂg?ﬁgg?mu)
Banks L 1L L I [| .-
Bias, Activation, lL " lL lL | Receiver Transmitter
Pooling Engine A D [SON®) Waveguide
] [ensnite] | ® ©® O o O (a0 (80N @ . LTl Photodetector
= é L|§J : o 00 Switch 0 (@) O. (@) (0 C O 1x2 Switch
C’g § E : e oo S o (S)'t(h)z Tunable Splitter
2 § ﬁ?; : ARSE e Q ©o0O Filter
[Receiver | | OO O ® ® () Modulator
M A5 16 M

Fig. 1: SPRINT architecture overview. We assume four chiplets and four PEs per chiplet. Eight wavelengths are multiplexed in
the photonic network. A0, A1, A2, A3 are responsible for data transmission from the GB to all accelerator chiplets, while \4,

A5, A6, \7 are responsible for data transmission from a corresponding accelerator chiplet to the GB.

SPRINT PE SPRINT Chiplet

\\

S | RCU | ,ﬁ]'ransmitter|

g g

PE 8 PE 3

[[

Rl “| R -

/ 5 5

= =

// PE I PE S

: SR 1glRm &

Accumulation Buffer ,

Fig. 2: PE and chiplet of the SPRINT architecture. Within a
chiplet, an electrical network-on-chip (2D mesh in our case)
is used for data transmission between PEs and the transmitter.

of NAE are either forwarded to the computing engine for
non-convolution operations or stored in the GB memory banks.

Accelerator Chiplet: As shown in Fig. 2, each accelerator
chiplet consists of a PE array, a reconfigurable control unit
(RCU), a transmitter, and several receivers that are distributed
to processing elements (PEs). Within each PE, there are several
vector multiply-accumulate (MAC) units and dedicated buffers
for temporary storage of weights, IAs, and partial sums. RCU
is responsible for tuning specific photonic components (we
discuss the details in the following section) during the network
reconfiguration process. The transmitter and receivers interact
with the corresponding photonic components on the photonic
interposer for data transmission.

Photonic Inter-chiplet Network: The photonic inter-chiplet
network is implemented on the photonic interposer. As shown
in Fig. 1, the upper half of this network can be configured to
dedicated GB-to-chiplet channels, a single-write-multiple-read
(SWMR) channel, or several segmented SWMR channels for
data transmission from the GB to accelerator chiplets. The
lower half of this network works as a multiple-write-single-
read (MWSR) channel for data transmission from accelerator
chiplets to the GB. Accordingly, the wavelengths multiplexed
in the network are divided into two groups - one group (A0, A1,
A2 and A3 in Fig. 1) is utilized in the upper half of the network
while the other group (M, A5, A6 and A7 in Fig. 1) is utilized
in the lower half of the network. The color of a micro-ring
resonator (MRR) shown in Fig. 1 indicates the wavelength on
which this MRR works.

B. SPRINT Intra-chiplet Network

As SPRINT architecture focuses on package-level integration
and communication bottleneck alleviation, we assume a similar
chiplet architecture as in [5] and a 2D electrical mesh as the
intra-chiplet network. We adopt wormhole flow control and
XY routing. This intra-chiplet network is responsible for data
transmission between local PEs and also from the local PEs to
the transmitter, which then drives the corresponding photonic
modulator on the interposer to transmit data to the GB.

C. SPRINT Inter-chiplet Network

The photonic inter-chiplet network is utilized to connect the
GB and PEs on accelerator chiplets. In the example shown
in Fig. 1, wavelengths A0, A1, A2 and A3 are responsible for
data transmission from the GB to accelerator chiplets while
A4, A5, A6 and A7 are responsible for data transmission from
accelerator chiplets to the GB. By directly transmitting weights
and IAs from the GB to accelerator chiplets and performing
partial sum accumulation operations at NAE, data transmission
between any accelerator chiplets is eliminated.

Key Components: There are two key components in the
proposed photonic network: tunable splitter [13] and electrical-
optical switch [14]. A tunable splitter achieves different split
ratios on a specific wavelength when different bias voltages
are applied to its MRR. The MRR works in the transient zone
between on-resonance and off-resonance so that a fraction of the
laser power is guided to the corresponding photodetector while
the rest is forwarded to the downstream accelerator chiplets,
as shown in Fig. 1. The electrical-optical switch (1x2 switch
in Fig. 1) associated with a waveguide determines whether it
works as a dedicated GB-to-chiplet channel or is combined
with other waveguides to form an SWMR channel.

GB to Chiplet Communication: The upper half of the
photonic network shown in Fig. 1 is responsible for data
transmission from the GB to accelerator chiplets, and can
be configured into one of the three modes: unicast mode,
broadcast mode, and multicast mode. In the unicast mode, all
the electrical-optical switches are at off-resonance and all the
tunable splitters are disabled. Each of the four waveguides
between the GB and accelerator chiplets works independently.
For example, the GB can transmit data to Chiplet 0 by

Chiplet 2 RCU Tunable
OPEO Splitter
° I < "
Receiver H . Filter
to PE1
o PE2 Receiver M .
o
—][[[Heemearsor}< 995
oPES Receiver %
o o
—T[[Heempereor-<} 9=
Receiver g q /;
Q Transmitter |
= |8 . 1x2 Switch
z| s Driver Vicro b
5 = icro bum|
% £ *Illlhhbﬁ) p Modulator
= 2
= Photonic Interposer

Fig. 3: Physical implementation of the photonic inter-chiplet
network, taking the part of C'hiplet 2 in Fig. 1 as an example.

modulating wavelengths A0, A1, A2, and A3 on the first waveg-
uide. Meanwhile, the GB can also transmit data to C'hiplet
1 by modulating the same four wavelengths on the second
waveguide, as the electrical-optical switch between these two
waveguides is at off-resonance and the two waveguides work
as independent channels. The unicast mode is used to distribute
weights from the GB to the weight buffer in each PE.

In the broadcast mode, all electrical-optical switches are
at on-resonance and all the tunable splitters are tuned to
appropriate split ratios based on their positions in the network.
Thus, all four waveguides in Fig. 1 are combined into an SWMR
broadcast channel. By using only one set of modulators, data
can be broadcast from the GB to all accelerator chiplets. Please
note that the correlation between a wavelength and a PE still
exists (e.g., A0 is used to broadcast from the GB to PEs labeled
PFE 0 in all accelerator chiplets). The broadcast mode is used
to broadcast IAs from the GB to the IA buffer of each PE.

The multicast mode is a combination of the above two modes.
In the multicast mode, the waveguides in the upper half of
the photonic network are grouped to form several segmented
SWMR channels. For example, as shown in Fig. 1, by tuning
Switch 0 and Switch 2 at on-resonance and Switch 1 at off-
resonance, we create two segmented SWMR channels: one for
multicast from the GB to Chiplet 0 and Chiplet 1 while the
other one for multicast from the GB to C'hiplet 2 and Chiplet
3. The multicast mode provides the flexibility to support more
sophisticated dataflows or simultaneous execution of multiple
DNN layers.

Chiplet to GB Communication: The lower half of the
photonic network shown in Fig. 1 is responsible for data
transmission from accelerator chiplets to the GB, and works
as an MWSR channel to collect partial sums. Each accelerator
chiplet is assigned a specific wavelength (e.g., A4 is assigned to
Chiplet 0) for data transmission to the GB. Please note that it is
possible to assign several wavelengths to an accelerator chiplet
if the bandwidth demand of an accelerator chiplet exceeds the
data rate of a single wavelength.

Physical Implementation: Light generated by the off-chip
laser source is coupled to the waveguides on the photonic

SPRINT Dataflow Exploiting SPRINT Network Features

1. Maximize IA broadcast from GB
to accelerator chiplet dies.

2. Leverage partial sum reduction
between local PEs.

parallel fork2=[0:K2)

parallel_forc2=[0:C2)

forr=[0:R) 3. Maximize stationary weight reuse
fors=[0:8S) and reduce unicast communication.
forp=[0:P) 4. Simplify partial sum accumulation
forq=[0:Q) at NAE in the GB.
fork1=[0:K1)
fore1=[0:C1)

5. Leverage partial sum reduction

parallelEforic0S (0+C0) between MAC units within a PE.

k=k1+k2*K1
c=c0+c1*C0+c2*C1*CO
OA[p qk]+=IA[p-1+rg-1+sc]*W[rsck]

Fig. 4: SPRINT customized dataflow that exploits the photonic
inter-chiplet network.

interposer through couplers. The peripheral circuitries of the
transmitter and receivers on each chiplet are connected to
corresponding photonic components on the photonic interposer
through micro-bumps. Fig. 3 shows the physical implementation
of one accelerator chiplet (C'hiplet 2 shown in Fig. 1) and
the related photonic components. The vertical and horizontal
waveguides in Fig. 3 are in separate layers to avoid crossing.

D. SPRINT Dataflow

Fig. 4 describes the customized SPRINT dataflow and how
it leverages the proposed photonic inter-chiplet network. This
dataflow is derived from the weight-stationary dataflow [5]. If
we assume a different accelerator chiplet architecture with a
different dataflow (e.g., row-stationary dataflow [3]), SPRINT
dataflow may change accordingly. However, the primary target
of SPRINT dataflow remains as maximizing the broadcast and
multicast communication.

Package-level Data Partition: At the package level, weights
are logically partitioned along the output channel k dimension
and physically mapped to different accelerator chiplets (K2 <
number of accelerator chiplets). As weight planes from different
k dimensions may take the same IA plane as input to perform
convolution operations, this IA plane is broadcast to accelerator
chiplets allocated with weights of different k£ dimension values
using the broadcast mode. For example, PE 0 of C'hiplet 0 and
PFE 0 of Chiplet 1 in Fig. 1 perform convolution operations on
the same IA plane which is broadcast to these two PEs using AO.
By doing so, we minimize the number of involved modulators
and leverage the ease of broadcast feature of the photonic
inter-chiplet network over other electrical counterparts. If the
number of output channels K is smaller than the number of
accelerator chiplets, we may process the convolution layer with
a subset of accelerator chiplets or process multiple convolution
layers in parallel. In both cases, we use the multicast mode to
minimize the number of modulators involved.

Chiplet-level Data Partition: At the chiplet level, weights
are logically partitioned along the input channel ¢ dimension
and physically mapped to different PEs (C2 < number of
PEs per chiplet) in each accelerator chiplet. As weight planes

TABLE I: SPRINT Architecture Parameters

Number of chiplets 64
Package Global buffer size per chiplet 64 KiB
Data rate per wavelength 10 Gbps
Inter-Chiplet Network Bandwidth 100 GB/s/chiplet
Number of PEs 64
Chiplet Intra-Chiplet network 2D mesh
Intra-Chiplet network bandwidth 68 GB/s/PE
Weight buffer size 32 KiB
IA buffer size 8 KiB
PE Accumulation buffer size 3 KiB
Vector MAC width 8
Number of vector MACs 8

from different ¢ dimensions take different IA planes as input
to perform convolution operations, different IA planes are
transmitted to PEs allocated with weights of different c
dimension values using different wavelengths. As shown in
Fig. 1, PE 0 and PE 1 of Chiplet 0 perform convolution
operations on two separate IA planes which are transmitted
to the two PEs using A0 and A1, respectively. Data partitions
at the package and chiplet levels determine the pattern of
weight and IA transmission from the GB to accelerator chiplets.
As SPRINT dataflow is developed from the weight-stationary
dataflow [5], weights are allocated to PEs without overlap and
transmitted using the unicast mode.

PE-level Dataflow: There are six loops in the PE-level
dataflow. The outer two loops at the r (height of weight filter)
and s (width of weight filter) dimensions maximize the reuse of
the stationary weights. The middle three loops at the p (height
of output activation plane), ¢ (width of output activation plane),
and k dimensions simplify the partial sum accumulation process
at NAE because the partial sums have been fully accumulated
temporally (cl loop) and spatially (cO and c2 loops) before
being transmitted to NAE.

MAC-level Dataflow: Within each PE, we perform dot pro-
ductions along the ¢ dimension to exploit efficient accumulation
of locally generated partial sums as in [5].

III. EVALUATION METHODOLOGY

In this section, we discuss the methodologies to compared
SPRINT with other state-of-the-art baselines in terms of
performance and energy consumption. Table I lists some key
architectural parameters of SPRINT. For SPRINT and other
baselines, we assume the same chiplet architecture as shown in
Table I except that the GB is implemented in a single silicon die
in SPRINT while equally distributed to accelerator chiplets in
other baselines. Please note that we choose 28 nm technology
to implement the photonic inter-chiplet network [15] as it is
common to adopt a relatively less-advanced technology for the
fabrication of the photonic interposer.

Simulator: We utilize a customized version of the open-
source Timeloop simulator [16]. We extend this simulator to
support the non-uniform distribution of latency and bandwidth
between PEs. In order to obtain execution time results, the
simulator monitors the number of arithmetic operations and
the number of accesses to each memory hierarchy, taking the
dataflow and system configuration parameters into account.

The number of arithmetic operations is used to calculate the
computation time, while the number of accesses to each on-
package memory hierarchy is used to calculate the on-package
communication time. We take the hierarchical network topology
and bandwidth limit into account when calculating the on-
package communication time. The off-package communication
time is obtained from the DRAMSim2 simulator [17]. The
overall execution time is derived by adding up the computation
time, the on-package communication time, and the off-package
communication time, considering the overlap caused by the
buffering of the GB and other memory hierarchies.

Power Model: The power consumption of arithmetic opera-
tions is modeled by Synopsys Design Compiler. The power con-
sumption numbers of accessing on-package memory hierarchies
(local buffers in each PE and the GB) and off-package DRAM
are obtained from CACTI 6.0 [22] and DRAMSim2 simulators,
respectively. The power consumption of data transmission
through an electrical interconnect is obtained from DSENT [21].
Finally, the power consumption of data transmission through a
photonic link is derived from (1):

Ptotal = IDlaser + PTX + PRX (1)

Piotq; includes three parts: laser power Pjgser, transmitter
circuitry power Prx, and receiver circuitry power Prx. We
calculate Pryx and Prx using parameters in [15] and scale the
results to 28 nm technology [15], [23]. Pjser can be further
divided into three parts: photodetector sensitivity P, insertion
loss Cioss, and system margin Mygem as shown in (2):

Plaser = Prs + C’loss + Msystem (2)

We assume a 4 dB [24] system margin to account for the
additional power loss. P,; and Cj,ss are obtained or derived
from parameters listed in Table II. We assume four 90-degree
bends for each waveguide. The length of a waveguide is set at
10 ¢m. We obtain the energy consumption of 0.77 pJ/bit in
SPRINT photonic inter-chiplet network.

Baselines: We compare SPRINT with two prior designs,
Simba [5] and POPSTAR [8]. For fair comparison, Simba and
POPSTAR are scaled to include the same type and number
of accelerator chiplets as in SPRINT. Simba is specifically
designed for DNN inference acceleration with an electrical inter-
chiplet network (we assume 100 GB/s/chiplet bandwidth and
per-hop latency of 10 clock cycles). POPSTAR is developed for
more general applications but with a 2.5D-integrated photonic
inter-chiplet network (we assume the same latency and per-
chiplet bandwidth as in SPRINT). SPRINT architecture is
a chiplet-based DNN accelerator (similar to Simba) with a
photonic inter-chiplet network (similar to POPSTAR).

Benchmark: We employ the ResNet-50 [1] DNN model
as the evaluation benchmark. Table III lists the 21 different
layer configurations obtained from ResNet-50. We include the
notation, the layer name in Caffe, and the layer configurations
(H: 1A plane size, C: number of input channels, R: weight
filter size, K: number of output channels, S: stride) in this
table. Please note that some layers in ResNet-50 share the same
configuration (e.g., res2a_branchl layer and res2[a-c]_branch2c

TABLE II: Photonic Parameters

TABLE III: Convolutional Layers with Different Parameters in ResNet-50

Component Value Notation Layer(s) H CR K S | Notation Layer(s) H CR KS
Laser source 5dB [18 L1 convl 224, 3,7, 64,2 | L12 res4a_branch2a 28, 512,11, 256, 2
Coupler 1dB [18 L2 res2a_branch2a 56, 64,1, 64,1 | L13 res4[a-f]_branch2b 14, 256, 3, 256, 1
Waveguide 1 dB/cm [18 L3 res2[a-c]_branch2b 56, 64,3, 64,1 | L14 res4[a-f|_branch2c 14, 256, 1, 1024, 1
Splitter 0.2 dB [19 L4 res2 a—c]_branchZc 56, 64,1, 256,1 | L15 res4[b-f]_branch2a 14, 1024, 1, 256, 1
Bend 1 dB [20 L5 res2[b-c|_branch2a 56, 256, 1, 64,1 L16 resSa_branchl 14, 1024, 1, 2048, 2
Waveguide crossover 0.05 dB [20 L6 res3a_branchl 56, 256, 1, 512,2 | L17 resSa_branch2a 14, 1024, 1, 512,2
Modulator loss 1 dB [21 L7 res3a_branch2a 56, 256, 1, 128,22 | LI8 res5[a-c]_branch2b 7, 512,3, 512, 1
Ring through 0.01 dB [21 L3 res3[a-d]_branch2b 28,128,3, 128, 1 | L19 res5[a-c]_branch2c 7, 512, 1, 2048, 1
Photodetector . 0.1 dB [18 L9 res3 a—d]_branchZc 28,128, 1, 512, 1 | L20 resS%)—c]_branch2a 7,2048, 1, 512, 1
Waveguide-to-receiver 0.5 dB [20 L10 res3[b-d]_branch2a 28,512, 1, 128, 1 | L2I fc1000 1, 2048, 1, 1000, 1
Receiver sensitivity -26 dBm [18 L1l res4a_branchl 28, 512, 1, 1024, 2

3 Simba POPSTAR m SPRINT g

N 15 N 12

© @©

E £

210 2 08

[()

£ £

E 5 E 04

=1 =]

g0 g 0

i L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 i Oneinference

Fig. 5: Per-layer execution time (normalized to L21 in Simba) and execution time of one inference pass (normalized to Simba).

Simba POPSTAR m SPRINT

=48 = 12
(o3 (5}

= N
E32 2 08
S S

= =
516 5 04
[[I
(= (=

L - || | I | |] | | | | | | m [| n] [| I [| m [| L 0

o

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 One inference

Fig. 6: Per-layer energy consumption (normalized to L21 in Simba) and energy of one inference pass (normalized to Simba).

layer). We compare SPRINT and two other baselines in a layer-
by-layer manner and then accumulate per-layer execution time
and energy consumption values to obtain the execution time
and energy consumption of a ResNet-50 inference pass.

IV. EXPERIMENT RESULTS
A. Execution Time

Fig. 5 shows the execution time comparison of SPRINT,
Simba, and POPSTAR in 21 different ResNet-50 layers and
in one complete inference pass. The per-layer execution
time values are normalized to the execution time of L21
(fc1000) in Simba while the execution time values for complete
inference passes are normalized to the execution time of one
complete inference in Simba. As compared to Simba, SPRINT
achieves execution time reduction in the range of 31% (L11:
res4a_branchl) to 49% (L17: res5a_branch2a). The difference
in reduction of execution time comes from (1) the average
hops of inter-chiplet communication in Simba, (2) the input
channel C and output channel K that determine the utilization
rate of PEs in SPRINT, and (3) the IA reuse distance that
largely determines the IA broadcast efficiency in SPRINT.
As compared to POPSTAR, SPRINT achieves execution time
reduction in the range of 6% (L21: fc1000) to 15% (L1:
convl). This indicates the effectiveness of the architecture and
dataflow co-design. SPRINT performs better than POPSTAR
because (1) SPRINT exploits the ease of broadcast feature
better than POPSTAR through package-level data partition, and
(2) SPRINT allocates higher bandwidth for communication
between the GB and accelerator chiplets. By accumulating the

execution time across all layers, we obtain an indication of
the execution time of an inference pass (the execution time of
non-convolution layers is not included). SPRINT performs a
ResNet-50 inference pass 46% and 12% faster than Simba and
POPSTAR, respectively.

B. Energy Consumption

Fig. 6 shows the energy consumption comparison of SPRINT,
Simba, and POPSTAR in 21 different ResNet-50 layers
and in one complete inference pass. The per-layer energy
consumption values are normalized to the energy consumption
of L21 (fc1000) in Simba while the energy consumption
values for complete inference passes are normalized to the
energy consumption of one complete inference in Simba. As
compared to Simba, SPRINT achieves energy consumption
saving in the range of 51% (L11: res4a_branchl) to 69%
(L2: res2a_branch2a). This mainly comes from the low energy
consumption of inter-chiplet communication in SPRINT. As
compared to POPSTAR, SPRINT achieves energy consumption
saving in the range of 53% (L11: res4a_branchl) to 54%
(L1: convl). The energy savings observed in different layers
are similar because SPRINT photonic inter-chiplet network
requires fewer MRRs than the photonic crossbar in POPSTAR.
By accumulating the energy consumption across all layers, we
observe that SPRINT achieves 61% and 52% energy saving as
compared to Simba and POPSTAR, respectively.

C. Scalability

We explore the scalability of SPRINT architecture by varying
the number of accelerator chiplets in the system from 4 to 128.

=z 21 = Simba POPSTAR m SPRINT

N

82

E

2 14 I

[}

£

= 07 I I

c

Qo

< 1 10
g 0

i 4 8 16 32 64 128

Fig. 7: Execution time comparison when increasing the number
of accelerator chiplets, normalized to Simba.

= Simba ~ POPSTAR ® SPRINT

= 18

s

g 12

o

B3

5 06 I I

[

[=

5, [|
4 8 16 32 64 128

Fig. 8: Energy consumption comparison when increasing the
number of accelerator chiplets, normalized to Simba.

Fig. 7 and Fig. 8 are the results of execution time and energy
consumption, respectively. We make the following observations:
(1) POPSTAR and SPRINT perform worse than Simba when
the number of accelerator chiplets is low due to the costly
modulation and receiving processes necessary for data exchange
between the electrical and optical domains; (2) POPSTAR
and SPRINT show good scalability in terms of execution
time as the system scales up due to the distance-independent
property of photonic interconnects; (3) the energy consumption
of POPSTAR, though scales better than Simba, is significantly
higher than that of SPRINT due to the large amount of MRRs
required in a photonic crossbar; (4) We project good scalability
of SPRINT in terms of execution and energy consumption
when the system scales beyond 128 accelerator chiplets.

D. Implementation Cost

Micro-bump Area: We assume 36 pm micro-bump pitch
size in our work. To achieve 100 GB/s/chiplet bandwidth,
there are in total 371 wires connecting the transmitters, receivers
and RCU on an accelerator chiplet to corresponding MRRs on
the photonic interposer. This only consumes 7.6% of the area of
an accelerator chiplet, which is about 6.3 mm?2. As most micro-
bumps can be implemented underneath the accelerator chiplet,
we assume that they do not incur additional area overhead.

Number of MRRs: To achieve 100 GB/s/chiplet band-
width, SPRINT requires 14 K MRRs while POPSTAR requires
330 K MRRs. This significant difference in the number of
required MRRs results from a fact that the number of MRRs
scales linearly and quadratically with the number of accelerator
chiplets in SPRINT and POPSTAR, respectively. POPSTAR
incurs higher implementation cost but performs worse than
SPRINT because the photonic crossbar in POPSTAR does not
exploit the unique communication features in DNN inference.

V. CONCLUSIONS

This paper presents SPRINT, a chiplet-based architecture
with photonic interconnects for DNN inference applications.

SPRINT introduces two novel designs: (1) a photonic inter-
chiplet network that adapts to the specific communication
patterns in DNN inference with minimal implementation cost
through reconfiguration, and (2) a customized dataflow that
exploits the ease of broadcast and multicast feature of photonics
and enables highly parallel DNN computations. Simulation stud-
ies prove that SPRINT achieves higher performance, consumes
less energy, and exhibits better scalability, as compared to other
state-of-the-art chiplet-based architectures.

VI. ACKNOWLEDGMENTS

This research was partially supported by NSF grants CCF-
1702980, CCF-1812495, CCF-1901165, CCF-1953980, CCF-
1513606, CCF-1703013, and CCF-1901192. We sincerely thank
the anonymous reviewers for their excellent feedback.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J.Sun. Deep Residual Learning for Image
Recognition. In CVPR, 2016.

[2] C. Szegedy et al. Going Deeper with Convolutions. In CVPR, 2015.

[3] V. Sze et al. Efficient Processing of Deep Neural Networks: A Tutorial
and Survey. Proceedings of the IEEE, 2017.

[4] R. Mayer and H. Jacobsen. Scalable Deep Learning on Distributed
Infrastructures: Challenges, Techniques, and Tools. ACM CSUR, 2020.

[5] Y. S. Shao et al. Simba: Scaling Deep-Learning Inference with Multi-
Chip-Module-Based Architecture. In MICRO, 2019.

[6] G. Ascia et al. Improving Inference Latency and Energy of DNNs
through Wireless Enabled Multi-Chip-Module-Based Architectures and
Model Parameters Compression. In NOCS, 2020.

[71 R. Hwang et al. Centaur: A Chiplet-based, Hybrid Sparse-Dense
Accelerator for Personalized Recommendations. arXiv:2005.05968, 2020.

[8] Y. Thonnart et al. POPSTAR: a Robust Modular Optical NoC Architecture
for Chiplet-Based 3D Integrated Systems. In DATE, 2020.

[9]1 P. Grani et al. Design and evaluation of awgr-based photonic noc

architectures for 2.5 d integrated high performance computing systems.

In HPCA, 2017.

P. Fotouhi et al. Enabling Scalable Chiplet-Based Uniform Memory

Architectures with Silicon Photonics. In MEMSYS, 2019.

Y. Demir et al. Galaxy: A High-Performance Energy-Efficient Multi-Chip

Architecture using Photonic Interconnects. In ICS, 2014.

A. Narayan et al. WAVES: Wavelength Selection for Power-Efficient

2.5 D-Integrated Photonic NoCs. In DATE, 2019.

E. Peter, A. Thomas, A. Dhawan, and S. R. Sarangi. Active Microring

based Tunable Optical Power Splitters. Optics Communications, 2016.

A. Biberman et al. Broadband Silicon Photonic Electrooptic Switch for

Photonic Interconnection Networks. IEEE PTL, 2011.

R. Polster et al. Efficiency Optimization of Silicon Photonic Links in

65-nm CMOS and 28-nm FDSOI Technology Nodes. IEEE TVLSI, 2016.

A. Parashar et al. Timeloop: A Systematic Approach to DNN Accelerator

Evaluation. In ISPASS, 2019.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle

Accurate Memory System Simulator. JEEE CAL, 2011.

R. Morris, A. Karanth, and A. Louri. Dynamic Reconfiguration of 3D

Photonic Networks-on-Chip for Maximizing Performance and Improving

Fault Tolerance. In MICRO, 2012.

S. Werner et al. Designing Low-Power, Low-Latency Networks-on-Chip

by Optimally Combining Electrical and Optical Links. In HPCA, 2017.

R. Morris and A. Karanth. Power-Efficient and High-Performance Multi-

level Hybrid Nanophotonic Interconnect for Multicores. In NOCS, 2010.

C. Sun et al. DSENT-a Tool Connecting Emerging Photonics with

Electronics for Opto-Electronic Networks-on-Chip Modeling. In NOCS,

2012.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0:

A Tool to Model Large Caches. HP laboratories, 2009.

A. Stillmaker and B. Baas. Scaling Equations for the Accurate Prediction

of CMOS Device Performance from 180 nm to 7 nm. Integration, 2017.

A. V. Krishnamoorthy et al. Computer Systems based on Silicon Photonic

Interconnects. Proceedings of the IEEE, 2009.

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]
[20]

[21]

[22]
(23]

[24]

