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Abstract—The exponential growth in computational demands
driven by emerging deep learning models poses significant scaling
challenges for the conventional digital computing systems. Analog
computing systems have gained traction as a promising alternative
owing to their intrinsic advantage in performing the prevalent
matrix-vector multiplication (MVM) operations in deep learning
workloads. However, existing technologies for constructing analog
computing systems present critical tradeoffs: resistive memory
offers superior power efficiency via non-volatility but suffers from
resistive-capacitive delay that limits operating speed while silicon
photonics enables high operating speed at the cost of excess power
overhead due to sensitivity to thermal and process variations. In
this work, we explore the photonic phase-change-memory (PCM)
technology and introduce an accelerator named BETA for deep
learning training workloads. Photonic PCM integrates the benefits
of resistive memory and silicon photonics while mitigating their
drawbacks. Furthermore, it unlocks one additional parallelism
dimension in the frequency domain, which can effectively support
the diverse computational patterns within deep learning training
workloads. Specifically, BETA includes two key components: (1)
a dual-datapath photonic PCM cell array capable of computing
MVMs in both original and transposed formats, and (2) a pipeline
design that leverages this dual-datapath capability to parallelize
the forward and backward passes of the mini-batch training for
minimum memory access and PCM cell programming overhead.
Simulation results across a collection of deep learning workloads
demonstrate the effectiveness of BETA in terms of performance
and energy efficiency compared to other state-of-the-art digital
and analog computing systems.

Index Terms—silicon photonics, deep learning, training, phase-
change-memory, back propagation

I. INTRODUCTION

The rapid growth in the size and complexity of deep learning
models [1], [2], [3] is driving an exponential increase in compu-
tational demands, thereby necessitating the accelerated scaling
of the underlying computing systems. However, conventional
digital computing systems are increasingly constrained by the
slowdown of transistor scaling and stringent power budgets,
making them difficult to meet the rising demands. In contrast,
the analog computing systems have emerged as a compelling
alternative due to the intrinsic efficiency in performing matrix-
vector multiplication (MVM) operations often observed in deep
learning workloads [4], [5].

Among the leading technologies for constructing the analog
computing systems include resistive memory [6] and silicon
photonics [7], each representing unique benefits over digital
counterparts but also exhibiting critical limitations. The analog
computing systems based on resistive memory [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19] achieve low
power consumption yet suffer from limited operating speed due
to resistive-capacitive delay. Conversely, the analog computing

systems based on silicon photonics [20], [21], [22], [23], [24],
[25], [26] enable high operating speed but incur substantial
power overhead to counteract thermal and process variations
[27], [28]. Photonic phase-change-memory (PCM) [29], [30]
has emerged as a disruptive technology that combines the non-
volatility of resistive memory with the high operating speed
capability of silicon photonics while mitigating their drawbacks.
In addition to this synergy, photonic PCM can operate across
several wavelengths in parallel. While prior work has leveraged
this property primarily to boost throughput [31], [32], we argue
that its full potential lies in the strategic exploitation to support
the complex and diverse computational patterns observed in
deep learning training workloads.

Existing analog computing systems [8], [20], [31] are well-
suited for deep learning inference workloads that include fixed
MVM operations between input vectors and weight matrices.
However, deep learning training workloads introduce increased
complexity owing to the backpropagation algorithm [33], which
incurs both MVM operations between input vectors and weight
matrices in the forward pass, and between gradient vectors and
transposed weight matrices in the backward pass. Supporting
such diverse MVM operations on the current analog computing
systems typically requires either frequent reordering of weight
matrices [15] or the inclusion of the costly peripheral circuits
inspired by transposable memory designs [9], [34], [35], [36].

In this paper, we present a photonic accelerator named BETA
which is optimized for deep learning training workloads. BETA
harnesses the unique capabilities of photonic PCM to deliver
high performance and energy efficiency while addressing the
computational diversity of deep learning training workloads. It
includes two key innovations. First, it employs a dual-datapath
photonic PCM cell array that can perform MVM operations in
both the original and transposed formats. Second, it adopts a
pipeline design which leverages this dual-datapath capability
to process both forward and backward passes of mini-batch
training in parallel, thereby minimizing costly memory access
and photonic PCM cell programming. Simulations across a
collection of deep learning workloads [1], [2], [37], [38],
[39], [40] demonstrate that BETA achieves significantly better
performance and energy efficiency than other state-of-the-art
digital and analog computing systems [8], [20], [31], [41]. The
key contributions of this work include:

Dual-Datapath Photonic PCM Cell Array: We propose a
photonic PCM cell array architecture featuring two independent
datapaths, in contrast to the single-datapath design adopted in
most existing analog computing systems. One datapath supports
MVM between a vector and a matrix like the single-datapath



design, while the other supports MVM between a second vector
and the same matrix but in its transposed format. This design
presents a potential to eliminate the costly matrix reordering.

Customized Pipeline: We propose a pipeline design tailored
to the dual-datapath capability. This design is built upon the
insight that the dual-datapath capability naturally aligns with
the computational patterns of backpropagation training, where
the forward and backward passes respectively involve MVM
operations on the original and transposed weight matrices. By
parallelizing the forward and backward passes across training
examples within a mini-batch, the proposed pipeline design
maximizes data reuse and minimizes memory access and
photonic PCM cell programming overhead.

Comprehensive Evaluation: We evaluate BETA against state-
of-the-art digital and analog deep learning accelerators using a
suite of diverse models spanning multiple application domains.
Simulation results show that BETA achieves 82% and 84%
reduction in execution time and energy consumption.

II. BACKGROUND & MOTIVATION

A. Deep Learning Training

Training a deep learning model using the backpropagation
algorithm includes three parts: forward propagation of inputs,
backward propagation of gradients, and updating weights. This
work focuses on the first two parts while updating weights is
assumed to be performed in the digital domain. Fig. 1 takes
a three-layer convolutional neural network as an example to
illustrate data and operations involved. Similar approaches can
be adopted for more advanced models such as Transformer [1]
and Long Short-Term Memory [2].

1) Input Forward Propagation: During forward propagation
of inputs, the input vector xl in the lth layer is multiplies with
its corresponding weight matrix Wl to generate the output
vector yl, which functions as the input vector xl+1 in the
(l + 1)th layer after processed by an activation function fl.
Following this approach, inputs are propagated from the first
layer to the last one as shown in Equation (1) and (2). Please
note that only weight matrices in the original format are needed
during input forward propagation.

yl = Wlxl (1)

xl+1 = fl (yl) (2)

2) Gradient Backward Propagation: During backward prop-
agation of gradients, the gradient vector δl in the lth layer
is multiplied with its corresponding transposed weight matrix
W T

l to generate the gradient vector δl−1 in the (l − 1)th layer,
wherein the derivation of the activation function f ′

l on the
output vector yl−1 in the (l − 1)th layer and the Hadamard
product are also involved. The gradient vector of the last layer
is derived by comparing the final output against ground truth
t. Following this approach, gradients are propagated from the
last layer to the first one as shown in Equation (3). Please note
that only weight matrices in the transposed format are needed
during gradient backward propagation.
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Fig. 1. Forward propagation of inputs (solid lines) and backward propagation of
gradients (dashed lines) included in a three-layer convolutional neural network.
This work concentrates on accelerating the matrix-vector multiplication (MVM)
between either the original or transposed weight matrices, Wl or W T

l , and
the corresponding input or gradient vectors, xl or δl, in the respective forward
propagation and backward propagation.

δl−1 =


(
W T

l δl
)
◦ f ′

l−1 (yl−1) Hidden Layer

fl−1 (yl−1)− t Output Layer

(3)

3) Weight Update: During weight update, the weight gra-
dient matrix ∆Wl in the lth layer is obtained by multiplying
the corresponding gradient vector δl and the transposed input
vector xl, together with a scaling factor η as shown in Equation
(4), which is eventually used to update the weight matrix Wl.
Please note that this work concentrates on accelerating input
forward propagation and gradient backward propagation. We
assume that weight update is performed in the digital domain.

∆Wl = −ηδlx
T
l (4)

B. Photonic PCM Computation

1) Photonic PCM Device: Fig. 2 illustrates the architecture
of a photonic PCM cell. One notable feature is its high contrast
in both the electrical (resistivity) and optical (refractive index)
properties between the crystalline and amorphous states. When
programmed to the crystalline state, a minimum fraction of
the input signal power can get through it with a loss factor
of lc. When programmed to the amorphous state, a maximum
fraction of the input signal power can get through it with a loss
factor of la. Hence, (la − lc) represents the most significant
difference in loss factor. We incorporate a reference state with
a loss factor of lr to account for the offset induced by the
non-zero lc. When the crystalline state is used as the reference
state (lr = lc), the crystalline and amorphous states correspond
to 0 and 1, respectively. Similarly, when a phase state between
the crystalline and amorphous states is used as the reference
state (lr = (lc + la) /2), the crystalline and amorphous states
correspond to -1 and 1, respectively. We adopt the latter setup in
BETA to ensure flexible architectural support and high training
accuracy and efficiency.

2) Scalar Multiplication: Two waveguides and one photonic
PCM cell coupled at their intersection via directional couplers
[31] as shown in Fig. 2, are used for scalar multiplication of
two numbers, a and b. Number a is encoded in the input
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Fig. 2. A photonic phase-change-memory (PCM) cell can be optically [31]
programmed to the crystalline state with minimum loss factor lc, the amorphous
state with maximum loss factor la, or any other state between crystalline and
amorphous states with a loss factor of l ∈ (lc, la). A scalar multiplication ab
is done by encoding a in the input signal power P and inscribing b in the
photonic PCM cell phase state, then measuring the output signal power Q. A
multiply-accumulate (MAC) operation is achieved by encoding multiple input
signals (wavelengths) and corresponding photonic PCM cells, then measuring
the accumulated output signal power. Parallel MAC operation is also supported.

signal power P of wavelength λ0 at the left end of the
horizontal waveguide via an attenuator [31]. The attenuated
input signal with power aP is coupled to the photonic PCM
cell whose phase state is programmed to have a loss factor of
l = lr + (la − lc) b such that the input signal can be further
attenuated. The output signal with power aP l is then coupled
back to the vertical waveguide and measured at the bottom
end of the vertical waveguide using a photodetector. The scalar
multiplication ab can be retrieved by following Equation (5),
whereas Qr = aP lr and ∆Qmax = (la − lc)P .

ab = (Q−Qr) /∆Qmax (5)

3) Multiply-Accumulate Computation: Deep learning work-
loads often involve MVM based on multiply-accumulate (MAC)
operations. Considering a MAC example shown in Fig. 2, two
horizontal and one vertical waveguides, and two photonic PCM
cells coupled at the two intersections are used. Number a0 and
a1 are encoded in the input signal power P of wavelengths λ0

and λ1 at the left ends of the two horizontal waveguides. The
attenuated input signals with power a0P and a1P are coupled
to the corresponding photonic PCM cells whose phase states
are programmed to have loss factors of l0 = lr + (la + lc)b0
and l1 = lr + (la + lc)b1 such that the input signals can be
further attenuated. The output signals with power a0Pl0 of
wavelength λ0 and a1Pl1 of wavelength λ1 are then coupled
back to the vertical waveguide and measured cumulatively at
the bottom end of the vertical waveguide using a photodetector.
The MAC result a0b0 + a1b1 can be similarly retrieved. In a
more generic scenario, the MAC result can be retrieved by
following Equation (6), whereas Qr

i = aiPlr.

∑
i

aibi =

(
Q−

∑
i

Qr
i

)
/∆Qmax (6)

4) Implementation Details: The adopted photonic PCM is
a relatively mature technology with prototypes available for
demonstrating its application to accelerating deep learning
workloads [31]. The dispersion in a photonic PCM cell can be

largely neglected (same loss factor l across all wavelengths) or
calibrated in the considered 180-205 THz wavelength range.
We can also assume a universal input signal power P in the
considered wavelength range or calibrate it at implementation
time. 1012 cycling endurance has been reported and 1015

cycling endurance is expected for a photonic PCM cell [31],
making them especially suitable for computation purpose.
Programming the loss factor of a photonic PCM cell is done
optically with picosecond pulses [31]. 8×8 photonic PCM cell
array has been prototyped while 64×64 array is projected [31].
BETA assumes 64× 64 photonic PCM cell array augmented
with additional directional couplers to enable the proposed
dual-datapath capability.

III. BETA ARCHITECTURE

A. BETA System Architecture

Fig. 3 illustrates an example system architecture of BETA
with nine processing tiles. These processing tiles are optically
connected to an off-chip laser source and microcomb [31] using
space-division multiplexing for input signal power distribution.
Meanwhile, they are also electrically connected to each other
and to the external High-Bandwidth Memory (HBM) [41]
via an electrical torus network. Each processing tile includes
a photonic PCM cell array augmented with encoding and
measuring units, a share of the SRAM buffer, and other
functioning blocks for activation f , derivative of activation
f ′, Hadamard product H , etc.

B. BETA Processing Tile Architecture

1) Photonic PCM Cell Array: At the core of each BETA
processing tile lies an n×n photonic PCM cell array, wherein
photonic PCM cells are located at the intersections of n
horizontal and n vertical waveguides.

According to Fig. 3(b), elements of a vector can be encoded
on the input signal power of wavelengths λ0 and λ1 using the
corresponding attenuators a0 and a1 at the top ends of two
vertical waveguides. The encoded vector is multiplied by all the
rows of the matrix. Specifically, 50% of the attenuated input
signal power a0P and a1P are coupled from corresponding
vertical waveguides to photonic PCM cells c00 and c01, whose
loss factors l00 and l01 represent elements in the first row of
the matrix, while the rest 50% are coupled from corresponding
vertical waveguides to photonic PCM cells c10 and c11, whose
loss factors l10 and l11 represent elements in the second row of
the matrix. The output signal power a0Pl00/2 of wavelength
λ0 and a1Pl01/2 of wavelength λ1 are coupled back to the
top horizontal waveguide. We measure the cumulative output
signal power at the right end of the top horizontal waveguide
and then retrieve the first element of the resulting vector. The
output signal power a0Pl10/2 of wavelength λ0 and a1Pl11/2
of wavelength λ1 are coupled back to the bottom horizontal
waveguide. We measure the cumulative output signal power
at the right end of the bottom horizontal waveguide and then
retrieve the second element of the resulting vector.

Similarly, elements of another vector can be encoded on
the input signal power of wavelengths λ2 and λ3 using the
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Fig. 3. BETA system architecture (a) with nine processing tiles electrically connected via a torus network and optically connected to the laser source and
microcomb using space-division multiplexing. High-Bandwidth Memory (HBM) is also electrically connected to the processing tiles via the corresponding
routers [42]. Each processing tile (b) includes an n× n (n = 2 in this example) photonic phase-change-memory (PCM) cell array, augmented with encoding
and measuring units, SRAM buffer, and other functioning blocks for activation, derivative of activation, Hadamard product, etc. The parallel multiplications
between the weight matrix W and input vector x (c), and between the transposed weight matrix W T and gradient vector δ (d) using non-overlapping sets of
wavelengths, have also been demonstrated.

corresponding attenuators a2 and a3 at the left ends of two
horizontal waveguides. The encoded vector is multiplied by
all the columns of the matrix (all the rows of the transposed
matrix). The two elements of the resulting vector are retrieved
from the measured cumulative output signal power at the
bottom ends of the two vertical waveguides. Please note that
a BETA processing tile adopts two sets of non-overlapping
wavelengths (λ0/λ1 and λ2/λ3 in Fig. 2(b)). Each photonic
PCM cell processes signals of two wavelengths in parallel,
representing the additional dimension of parallelism in the
frequency domain.

2) Encoding and Measuring Units: There are two encoding
units located close to the top and left edges of the photonic
PCM cell array. Similarly, there are two measuring units located
close to the bottom and right edges of the photonic PCM
cell array. Each encoding unit includes n pairs of digital-
to-analog converter (DAC) and driver whereas each pair is
connected to a specific attenuator. Each measuring unit includes
n pairs of transimpedance amplifier (TIA) and analog-to-digital
converter (ADC) whereas each pair is connected to a specific
photodetector. The number of pairs of DAC and driver, or
TIA and ADC, is 2n, which is the same as the number of
wavelengths involved. Such a design aligns well with BETA
as the peripheral circuit cost is proportional to the number
of wavelengths (system throughput). However, it does not
align well with analog computing systems based on resistive
memory [9], as only one encoding and one measuring units
can be utilized at any given time to avoid a short circuit.

3) Miscellaneous Modules: The on-chip SRAM buffer is
evenly distributed to each BETA processing tile. The local

share of the SRAM buffer on a processing tile interacts with
the local photonic PCM cell array through the encoding and
measuring units while interacting with other processing tiles and
the external HBM through the torus network via the dedicated
router (R). The local share of the SRAM buffer stores input
vectors x, output vectors y, gradient vectors δ, and weight
gradient matrices ∆W for future reuse. As the SRAM buffer
takes a significant fraction of the die size [41], we need to
strategically schedule computations to maximize data reuse and
minimize the costly memory access and photonic PCM cell
programming overhead. There are several more functioning
blocks on each processing tile. The activation block f performs
activation on an output vector to generate an input vector of the
subsequent layer during the forward propagation of inputs. The
derivative of activation and Hadamard product block f ′&H
performs Hadamard product between the derivative of activation
of the output vector of the previous layer and MVM between
the transposed weight matrix and the gradient vector to generate
the gradient vector of the previous layer during the backward
propagation of gradients. We assume that both functioning
blocks work in the digital domain. Other necessary functioning
blocks such as pooling are not to be discussed here.

4) Dual-Datapath Capability: The dual-datapath capability
naturally aligns with the computational patterns of backprop-
agation training, where the forward and backward passes
respectively involve MVM on original and transposed weight
matrices. Fig. 3(c) and Fig. 3(d) show the MVM between an
input vector and a weight matrix and MVM between a gradient
vector and the same weight matrix but in its transposed format,



respectively, while the weight matrix (w00, w01;w10, w11) is
fixated in the processing PCM cell array throughout the process.

During the forward pass, input vector x = (x0, x1) is
encoded on wavelengths λ0 and λ1 and transmitted via two
vertical waveguides. The input vector is multiplied by the first
row of the weight matrix (w00, w01). The result x0w00+x1w01

is retrieved from the measurement of the output signal power
at the right end of the top horizontal waveguide. Similarly, the
input vector is also multiplied by the second row of the weight
matrix (w10, w11). The result x0w10+x1w11 is retrieved from
the measurement of the output signal power at the right end of
the bottom horizontal waveguide. The resulting output vector
y = (x0w00 + x1w01, x0w10 + x1w11) is therefore obtained.
This path of feeding a vector at the top ends of vertical
waveguides and retrieving the resulting vector at the right
ends of horizontal waveguide represents the first datapath.

During the backward pass, gradient vector x = (δ0, δ1) is
encoded on wavelengths λ2 and λ3 and transmitted via two
horizontal waveguides. The gradient vector is multiplied by
the first column of the weight matrix (w00, w10) (first row of
the transposed weight matrix). The result δ0w00 + δ1w10 is
retrieved from the measurement of the output signal power at
the bottom end of the left vertical waveguide. Similarly, the
gradient vector is also multiplied by the second column of
the weight matrix (w10, w11) (second row of the transposed
weight matrix). The result δ0w01 + δ1w11 is retrieved from
the measurement of the output signal power at the bottom
end of the right vertical waveguide. The resulting vector
(δ0w00 + δ1w10, δ0w01 + δ1w11) is therefore obtained. This
path of feeding a vector at the left ends of horizontal
waveguides and retrieving the resulting vector at the bottom
ends of vertical waveguides represents the second datapath.

C. BETA Pipeline

We take the neural network example from Fig. 1 to illustrate
how the mapping of neural network layers to BETA processing
tiles is done and show the result in Fig. 4. Please note that
we assume each processing tile can fully accommodate the
computation and data of a neural network layer for simplicity.
When mapping real deep learning models to BETA architecture,
the combination of multiple BETA processing tiles can be
regarded as a virtual tile to accommodate a neural network
layer, whereas inter-tile communication overhead through the
torus network is considered. When the combination of all
available BETA processing tiles still cannot accommodate a
neural network layer, the tiling technique as in [43], [44] is
utilized with the target of minimizing off-chip memory access.

As shown in Fig. 4, three layers of the example neural
network are mapped to three processing tiles (or virtual
processing tiles each including several physical tiles). Each
tile fixes the weight matrix on its photonic PCM cell array
while holding involved input vectors, output vectors, gradient
vectors, and weight gradient matrix in the local share of the
SRAM buffer.

During the first itinerary, Tile 1 is activated and performs
MVM between input vector x1 and weight matrix W1 for

Tile 1 Tile 2 Tile 3
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Fig. 4. Mapping the three-layer neural network shown in Fig. 1 to three
BETA processing tiles, assuming each processing tile can fully accommodate
an individual neural network layer. We use solid and dashed lines to explain
data exchanges between the processing tiles during forward propagation and
backward propagation, respectively.

output vector y1, which is processed by the activation function
f1 and forwarded to Tile 2. During the second itinerary, Tile 2
is activated and performs MVM between input vector x2 and
weight matrix W2 for output vector y2, which is processed by
the activation function f2 and forwarded to Tile 3. During the
third itinerary, Tile 3 is activated and performs MVM between
input vector x3 and weight matrix W3 for output vector y3,
which is processed by the activation function f3 to get the final
output vector of the neural network. This marks the end of the
forward pass. During the fourth itinerary, the final output vector
is compared against the ground truth t to generate the gradient
vector δ3. Tile 3 is activated and performs MVM between the
gradient vector δ3 and the transposed weight matrix W T

3 . The
resulting gradient vector is forwarded to Tile 2. During the fifth
itinerary, the gradient vector δ2 is generated through the f ′

2&H
function. Tile 2 is activated and performs MVM between the
gradient vector δ2 and the transposed weight matrix W T

2 . The
resulting gradient vector is forwarded to Tile 1. During the
last itinerary, the gradient vector δ1 is generated through the
f ′
1&H function. This marks the end of the backward pass.

Please note that although the dual-datapath capability of
BETA architecture eliminates the costly reordering of the
weight matrix between the forward and backward passes, we
are still far away from optimal execution as only one processing
tile is activated at any given time, leading to significant system
underutilization. This is due to the strict sequential execution
order within a training example. We propose to pipeline the
forward and backward passes of training examples within a
mini-batch. In this way, all BETA tiles can be fully utilized
while the strict sequential execution order per training example
is preserved. Such a pipeline leads to reduction in execution
time as demonstrated in [45] and smaller on-chip footprint.

IV. EVALUATION METHODOLOGY

A. Evaluation Setup

We develop a cycle-accurate simulator to model BETA and
other baseline architectures. The key parameters of the involved
components are listed below. We assume 8-bit DACs with
14 GS/s sampling speed, 50 mW power consumption, and
a footprint of 11000 µm2 [46], 8-bit ADCs with 10 GS/s
sampling speed, 15 mW power consumption, and a footprint
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Fig. 6. Execution time breakdown of baseline architecture PTC and BETA
when applying stochastic (left) and mini-batch (right) gradient descent training.

of 2850 µm2 [47]. The sampling speeds of the adopted DACs
and ADCs are above or equal to 10 GS/s as we assume 10
GHz operating speed for BETA and other optical baseline
architectures. We assume TIA with 3 mW power consumption
and a footprint 11000 of µm2 [48], and photodetectors with
1.1 mW power consumption, a footprint of 40 µm2 [49],
and sensitivity of -23 dBm [50]. The insertion loss values of
direction couplers and waveguide crossing are 0.1 dB [25]
and 0.03 dB [51], respectively. The size of the photonic PCM
array of each BETA processing tile is 64×64, as projected
in [31]. For a fair comparison, we assume a 600 mm2 die
size, 128 MB SRAM buffer, 32 GB external HBM, and 1200
GB/s external memory bandwidth across all baselines and
BETA architecture. The computation formats for digital and
analog baselines are 16-bit floating-point and 16-bit fixed-point
[52], respectively. The technologies for constructing analog
computing systems often do not support 16-bit resolution per
device cell. In such a case, multiple cells are cascaded as in
[8] to support fixed-point 16-bit computation. The bandwidth
per torus link is set at 50 GB/s.

B. Baseline Architectures

The proposed BETA architecture is compared against four
state-of-the-art digital and analog computing systems for DNN
training workloads, namely TPU [41], Pipelayer [8], DEAP
[20], and PTC [31]. TPU baseline, which is the only digital
computing system here, exhibits 16-bit floating-point format
for computation with an operating frequency of 1.05 GHz.
Pipelayer exhibits a 16-bit fixed-point format for computation
with an operating frequency of 1 GHz. Since each resistive
memory cell is assumed to have 4-bit resolution, four such
resistive memory cells are cascaded to support 16-bit fixed-
point computation. DEAP exhibits a 16-bit fixed-point format
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Fig. 7. Execution time comparison between BETA and baseline architectures
when applying mini-batch (b = 128) gradient descent training.

for computation with an operating frequency of 10 GHz. Three
microring resonators (MRRs) are cascaded to support 16-bit
fixed-point computation, as each MRR has a 6-bit resolution.
PTC also exhibits a 16-bit fixed-point format for computation
with an operating frequency of 10 GHz. Two photonic PCM
cells are cascaded to support 16-bit fixed-point computation,
as each photonic PCM cell has an 8-bit resolution [53], which
is the same as in BETA architecture.

C. Benchmark

We evaluate BETA and other baseline architectures using six
DNN models: LeNet-5 [37] with MNIST dataset, VGG-16 [38],
ResNet-50 [39], and GoogLeNet [40] with ImageNet dataset,
Transformer [1] with WMT17 EN-DE dataset, and GNMT [2]
with WMT16 EN-DE dataset. The selection aims to cover a
wide spectrum of DNN models with different characteristics and
application scenarios for a comprehensive evaluation. For each
selected DNN model, BETA and other baseline architectures
are tested using stochastic and mini-batch gradient descent
approaches. BETA is expected to deliver the most significant
improvements in terms of performance and energy consumption
when the mini-batch gradient descent approach is adopted.

V. EXPERIMENT RESULTS

A. Execution Time

1) Stochastic Gradient Descent: Fig. 5 shows the exe-
cution time comparison between BETA and other baseline
architectures when adopting the stochastic gradient descent
approach. All values are normalized to that of the TPU baseline
architecture. Compared with the TPU baseline architecture,
all its analog counterparts achieve significant reductions in
execution time. Specifically, Pipelayer, DEAP, PTC, and BETA
achieve on average 58%, 64%, 63%, and 73% reductions in
execution time, proving the advantages of analog computing
systems in performing MVM operations. DEAP and PTC
baseline architectures achieve similar execution time values as
they follow the same operating mechanism, only on different
optical devices (MRRs and photonic PCM cells for DEAP
and PTC, respectively). The execution time for PTC baseline
architectures is on average 2% higher than the execution time
for DEAP baseline architecture, mainly due to the higher delay
of programming the photonic PCM cells. BETA achieves 25%
execution time reduction as compared to the PTC baseline
architecture, demonstrating the effectiveness of the BETA
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Fig. 8. Energy comparison between BETA and baseline architectures when
applying stochastic gradient descent training.

pipeline, which minimizes the costly memory access and
photonic PCM cell programming operations. Fig. 6 (left) shows
the execution time breakdown analysis of BETA and the PTC
baseline architecture when training the VGG-16 model using
stochastic gradient descent. The overall execution time is
divided into three parts: time for actual computation, time for
memory access, and time for programming photonic PCM cells.
We conclude that BETA and the PTC baseline architecture take
similar time for actual computation, while BETA takes less
time for memory access and photonic PCM cell programming.

2) Mini-Batch Gradient Descent: Fig. 7 shows the execution
time comparison between BETA and other baseline archi-
tectures when applying mini-batch gradient descent training
(b = 128). All values are normalized to that of the TPU baseline
architecture. Compared with the TPU baseline architecture,
Pipelayer, DEAP, PTC, and BETA achieve on average 60%,
67%, 67%, and 82% reductions in execution time. BETA
achieves 48% execution time reduction as compared to the PTC
baseline architecture, which is higher than 25% execution time
reduction when applying stochastic gradient descent training,
because BETA pipeline exhibits higher benefits by processing
the forward propagation and backward propagation of different
training examples in the same mini-batch in parallel while
maintaining the sequential processing order of layers in each
training example. Fig. 6 (right) shows the execution time
breakdown analysis of BETA and the PTC baseline architecture
when training the VGG-16 model using mini-batch gradient
descent (b = 128). The reduction in time for memory access
and photonic PCM cell programming is even more significant
in the mini-batch gradient descent case, because of the BETA
pipeline design.

B. Energy Consumption

Fig. 8 and Fig. 9 show the energy consumption comparison
between BETA and other baseline architectures when applying
stochastic and mini-batch gradient descent training approaches,
respectively. All values are normalized to that of the TPU
baseline architecture. Compared with the TPU baseline archi-
tecture, all its analog counterparts achieve reductions in energy
consumption. Specifically, Pipelayer, DEAP, PTC, and BETA
achieve on average 70%, 46%, 69%, and 80% reductions in
energy consumption, respectively, when applying stochastic
gradient descent training. Pipelayer, DEAP, PTC, and BETA
achieve on average 71%, 29%, 58%, and 84% reductions in
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Fig. 9. Energy comparison between BETA and baseline architectures when
applying mini-batch (b = 128) gradient descent training.

energy consumption, respectively, when applying mini-batch
gradient descent training. When comparing optical baseline
architectures and BETA, we observe that the DEAP baseline
architecture consumes the highest energy because it requires
excessive tuning power to compensate for temperature and
process variations. The PTC baseline architecture also exhibits
relatively high energy consumption due to the power consumed
for photonic PCM cell programming. BETA achieves the lowest
energy consumption because it significantly minimizes the
costly memory access and photonic PCM cell programming
operations and does not require additional power due to the
non-volatility property of photonic PCM.

VI. CONCLUSION

This paper introduces BETA, a photonic accelerator opti-
mized for deep learning training workloads. BETA harnesses
the disruptive photonic PCM technology and exploits the
additional dimension of parallelism in the frequency domain.
BETA features (1) a dual-datapath photonic PCM cell array
that computes MVM in both original and transposed matrix
formats, and (2) a pipeline design tailored to the dual-datapath
capability to parallelize the forward and backward passes of
training examples within a mini-batch, minimizing memory
access and photonic PCM cell programming overhead.
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