
Extending Energy-Efficient and Scalable DNN Training and Inference

with 3D Photonic Accelerator
Juliana Curry, Graduate Student Member, IEEE, Yuan Li, Member, IEEE, Ahmed Louri, Fellow, IEEE, Avinash

Karanth, Senior Member, IEEE, Razvan Bunescu, Member, IEEE

Abstract—As deep neural network (DNN) models continue
to grow in complexity, analog computing architectures have
emerged as a promising solution to meet increasing computa-
tional demands. Among these, silicon photonic computing excels
at efficiently executing dot product operations while leveraging
inherent parallelism. Photonic phase change memory (photonic-
PCM) further enhances photonic computing by enabling scalable,
non-volatile storage. In this work, we introduce the 3D Large-
Scale Photonic Accelerator (LSPA), a novel photonic computing
architecture designed for large-scale DNN models. LSPA employs
multi-layered 3D stacking of non-volatile photonic-PCM cells,
creating a high-density computational fabric that optimizes
energy efficiency, flexibility, and scalability. LSPAs custom 3D
photonic network enables simultaneous data multicast in two
dimensions and accumulation in three dimensions, optimizing
communication patterns essential for efficient DNN training. A
distinctive feature of LSPA is its ability to execute multiple
forward and backward passes in parallel within each mini-batch,
reducing latency associated with data movement and photonic-
PCM programming. This unique capability combined with high-
bandwidth photonic interconnects allows LSPA to sustain efficient
training across a wide range of DNN workloads. When evaluated
against a range of neural network models including VGG-16,
ResNet-50, GoogLeNet, Transformer, GNMT, LLaMA 7B, and
LLaMA 30B, LSPA reduces execution time by up to 92% and
energy consumption by up to 90%. These results highlight LSPA
as a transformative advancement in scalable, high-performance
photonic computing for deep learning.

Index Terms—Silicon photonics, PCM, 3D architecture, neural
networks.

I. INTRODUCTION

The exponential growth in deep neural network (DNN)
model sizes has driven a need for scalable and energy-efficient
accelerators [1], [2], [3], [4]. Conventional digital computing
architectures struggle to meet these demands due to funda-
mental limitations such as transistor scaling slowdowns and
stringent power constraints. Analog computing has emerged
as a promising alternative, reducing power consumption, thus
increasing energy efficiency and improving performance of
DNN accelerators [5]–[15]. However, existing analog acceler-
ators suffer from key bottlenecks that hinder their scalability.
Memristor based accelerators face challenges such as finite
switching speeds on the order of 10ns that are slower than
those of conventional transistors on the order of ps or ns and
manufacturing variability that poses significant challenges for
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reliability and large-scale integration [6]. Silicon photonics uti-
lizing microring resonators (MRRs) and Mach-Zehnder Inter-
ferometers (MZIs) achieve high speed operations ( [16], [17])
but incur high tuning power requirements and susceptibility
to process and temperature fluctuations [18]. Furthermore,
both memristor and silicon photonics are restricted to a single
operation on a memory or photonic cell at any time, thereby
limiting the maximum achievable throughput and scalability.

Photonic phase change memory (photonic-PCM) technol-
ogy capitalizes on the strengths of both memristor and silicon
photonics technologies while effectively circumventing the
drawbacks of both technologies specifically for analog com-
puting systems [19], [20]. Photonic-PCM offers high durabil-
ity, write cycle endurance (1012) [21], non-volatility [22] and
thermal stability (minimal 1-5% degradation after sustained
exposure) [23], [24], [25] making photonic-PCM ideal for
both inference and weights for DNN training and inference.
To meet the growing DNN acceleration challenges, three-
dimensional (3D) stacking approaches have been proposed
that include micro-bumping, hybrid bonding, and monolithic
3-D integrated circuits (ICs) [26], [27], [28], [29]. Some
industry examples of 3D packaging technologies include in-
tegrated 3D stacked memory by Graphcore IPU-2 [30], the
Intel Foveros technology which uses micro-bump technology
to stack dies vertically in a face-to-face (F2F) fashion [31]
and TSMC’s System-on-Integrated-Chips (SoIC) platform en-
abling the stacking and interconnection of multiple chiplets
[32], [33]. While 3D integration leads to increased power
density in electronic platforms, photonic 3D stacking 3D
stacking achieves high computation density while maintaining
energy efficiency.

In this paper we propose the 3D Large-Scale Photonic
Accelerator (LSPA), a 3D-stacked photonic computing ar-
chitecture that leverages photonic-PCM for large-scale DNN
training. This design introduces several key contributions:
• 3D Vertical Stacking of Passive Photonic Layers: LSPA

stacks multiple non-volatile passive layers of photonic-
PCM cells to achieve high computational density while
extending energy efficiency, flexibility, and scalability.
3D vertical stacking enables high-density integration in
LSPA while achieving low energy and low latency for
DNN acceleration. By stacking a configurable number of
passive photonic layers, LSPA’s architecture is flexible
and scalable to meet various application needs. Since
the passive photonic layers only consist of MRRs being
used as filters that do not need to be tuned periodically,
and photonic-PCM cells which are non-volatile, power
consumption is minimized.
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• Efficient Dataflow with 3D Photonic Interconnects:
The unique layout of the LSPA stack architecture com-
bined with the WDM properties of photonic-PCM per-
form training efficiently without re-programming weights
between the forward and backward passes. The stacked
photonic-PCM cells are connected through a 3D photonic
network to facilitate efficient data multicast in two dimen-
sions and data accumulation in three dimensions, catering
to the operation patterns observed in DNN training. The
LSPA accelerator can support the parallel execution of
forward and backward passes within each mini-batch,
effectively hiding the latency of data movements and
programming operations needed for the photonic-PCM
cells. The main power requirement of the passive pho-
tonic layers is programming the photonic-PCM cells with
weight kernels which is done using low-power optical
pulses and minimized by the custom LSPA architecture
layout that can be used in multiple directions to avoid
reprogramming photonic-PCM cells between forward and
backward passes.

• Performance Evaluation: Through extensive modeling
and simulation we demonstrate that LSPA outperforms
state-of-the-art digital and analog accelerators across
various DNN workloads. We consider state-of-the-art
analog computing accelerators Pipelayer (resistive mem-
ory technology-based architecture), DEAP-CNN (MRR-
based architecture), and PTC (photonic-PCM-based ar-
chitecture) as well as digital accelerator implementations
on GPU, FPGA, and CPU platforms and state-of-the-art
digital accelerator TPU. Simulation results demonstrate
that LSPA reduces execution time by 92% and energy
consumption by 90% compared to other accelerators.

II. BACKGROUND AND MOTIVATION

A. Technologies for Analog Computation

Resistive Memory: With DNN models exponentially increas-
ing in size, complexity and energy consumption, emerging
technologies such as resistive memory technology [5], [10] and
silicon photonics [34], [16] have been exploited for analog dot
product operations. Figure 1a shows one such example where
a memristor cell is located at each intersection between wires.
The memristor cells are programmed to conductance values
representing a first vector G⃗ while voltage levels representing a
second vector V⃗ are applied to the horizontal wires. According
to Kirchhoff’s Law, a current signal I = V1×G1+V2×G2+
V3×G3 is observed and measured at the bottom of the vertical
wire representing the dot product V⃗ · G⃗. Memristors are non-
volatile but suffer from low operating frequency and scalability
due to process variations and fluctuations [8].
Silicon Photonics: Figure 1b illustrates an example of an
MRR implementation of an analog dot product operation.
Each MRR couples a unique resonant wavelength from the
respective horizontal waveguide to the vertical waveguide.
We assume three wavelengths with their power levels P1

P2, and P3, respectively, representing a first vector P⃗ , and
MRR cells programmed to attenuation factors by θ1, θ2,
and θ3 by shifting their resonant wavelengths to represent

(a) (b)
Fig. 1. Analog dot product operations using (a) memristor cells and (b)
photonic microring resonator (MRR) cells.

TABLE I
ANALOG DOT PRODUCT DEVICE COMPARISON

Device Non- Parallel Bit Tuning
Volatile dot-product Resolution Power

Memristor Yes No 2-bit [5] 15µW [5]
Thermal No No 6-bit 1.7 mW [35]

MRR
Electronic No No 6-bit 1.23 mW [36]

MRR
Photonic- Yes Yes 8-bit 2 mW [37]

PCM

a second vector A⃗. The light power level measured as a
photocurrent signal at the bottom of the vertical waveguide is
I = P1 × θ1 +P2 × θ2 +P3 × θ3 representing the dot product
P⃗ · A⃗. Such MRR technology-based dot product architectures
require electric or thermal tuning to attenuate signals as well
as to compensate for process and temperature variations [18]
but can achieve high operating frequency [17] and scalability
[16].

The majority of energy consumption and execution time
incurred in existing photonic accelerators are rooted in the
tuning of MRRs (up to 50% for DEAP-CNN) [16]. Therefore,
reducing the energy consumption for MRR tuning has the
potential to improve the performance of photonic accelerators
as compared in Table I. Electronic tuning at 0.2 pm/V or
24.0 Hz/V will require applying large DC voltages whereas
thermal tuning requires thermal heaters for each MRR which
can shift an MRR’s resonant wavelength within ϕ±0.2. While
effective in shifting the resonant wavelength, crosstalk needs
to be avoided from adjacent channels in a multi-channel WDM
system resulting in only 6 bits of resolution [38], making
thermal tuning challenging for training.
Photonic-PCM: Photonic-PCM reduces energy consumption
due to non-volatile tuning, has the added benefit of 8-bit
resolution, and is compatible with WDM which provides
an extra degree of parallelism. By exploiting the frequency
domain in the form of WDM with photonic-PCM, the simulta-
neous operation of multiple input vectors encoded on different
wavelengths are implemented on a photonic-PCM cell without
interference. By contrast, a memristor cell can only generate
a single current output based on the input voltage and its
conductance value at any time. An MRR cell can attenuate
the intensity of a single resonant wavelength at any time. One
prior analog computing system [19] based on photonic-PCM
technology has leveraged this property to improve system
throughput for DNN inference.
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(a) (b)

Fig. 2. (a) Architecture of the photonic phase change memory (PCM) cell
and (b) Working mechanisms of a directional coupler.

LSPA leverages the non-volatile property of photonic-PCM
devices to perform dot product operations similar to that of
memristor devices and achieves high operating frequency and
scalability similar to using photonic devices. Furthermore,
since the programmed attenuation factor of any photonic-PCM
cell is not specific to a fixed wavelength, more than one
vector dot product can be performed at once on the same
photonic-PCM cell. Although parallel dot product operations
using WDM have been achieved in prior work [23], we design
the layout of the LSPA accelerator architecture to uniquely
leverage WDM in order to facilitate the parallel operation of
forward and backward passes in DNN training. The layout of
LSPA expedites performing dot product operations between
weight vectors programmed in photonic-PCM cells and input
feature vectors as well as dot product operations between the
same weight vectors programmed in photonic-PCM cells and
output feature gradient vectors in parallel.

B. Key Photonic Devices for LSPA

Photonic Phase Change Memory: LSPA relies on photonic
phase change memory (photonic-PCM) to attenuate photonic
signals, thereby performing multiplication [23], [39], [40],
[41]. An essential characteristic of photonic-PCM cells is
their significant contrast in both electrical (resistivity) and
optical (refractive index) properties between the amorphous
and crystalline states. Consider an architecture in which a
photonic-PCM cell is positioned directly above a waveguide
as shown in Figure 2a. The state of this photonic-PCM cell
can be either read (through measuring the attenuation of the
input light at the output side, Pout −Pin) or programmed (by
applying an optical pulse with a certain power level).
Resolution: The photonic-PCM cell represents 0 when pro-
grammed to the crystalline state since most of the light is
absorbed and represents 1 when programmed to the amor-
phous state since none of the light is absorbed by the cell.
Moreover, photonic-PCM can be programmed to a transient
state (between 0 and 1) wherein partial light is absorbed by
the cell. The number of distinguishable states between the
crystalline and amorphous states determines the resolution of
the photonic-PCM cell. For this work we use photonic-PCM
cells with 8-bit resolution [42], [43].
Reliability of Photonic-PCM: The reliability and durability
of photonic PCM for dot products has been validated in
a 600-hour durability test that showcases the resilience of
photonic PCM under continuous operation [23]. A 1012 write
cycling endurance has been reported [21] and 1015 endurance
is expected [19]. Once written, PCM memory is non-volatile
for up to 10 years [22], [20], [44]. Thermal cycling and optical
fatigue tests also show that continuous operation under intense

Fig. 3. Transient state operation of MRR in which a fraction α of the power
of the light from the input port is coupled to the the drop port, while the
remaining 1− α fraction of the power can be observed at the through port.

optical pulses leads to minimal degradation in performance,
around 1-5 % after sustained exposure [45], [46], [24], [25].
Since thermal and optical stability is high, photonic-PCM can
resist issues such as overheating, stress accumulation, or light-
induced damage, all of which could degrade performance if
they were more pronounced [47]. Since the photonic-PCM
cell is reconfigurable, non-volatile, and can be written to and
read from using optical pulses, photonic-PCM is ideal for
implementing weights for both inference and training in LSPA
stack. However, it is vital that weights are reused whenever
possible to minimize the costly photonic-PCM cell tuning
process.
Directional Coupler: Directional couplers are utilized to
couple a specific MRR to two neighboring waveguides in
the active photonic layer. Figure 2b illustrates the directional
coupler [48] used in the LSPA accelerator architecture. From
left to right, it consists of a symmetric coupler, an asymmetric-
waveguide-based phase control, and a second symmetric cou-
pler. The split ratio of light power at the cross port over the
input port is determined by the length of the symmetric coupler
L1 and the length of the phase control section L2, among other
parameters. In the LSPA accelerator architecture, a directional
coupler with a maximum coupling length of 10µm is sufficient
to cover all necessary split ratios as in [23].
Microring Resonators: MRRs can be used for several pur-
poses including modulating, filtering and partially splitting
power as shown in Figure 3 [34]. In the transient state shown,
a fraction α of the power of the light from the input port on the
first horizontal waveguide is coupled to the circular waveguide,
and eventually to the drop port on the second horizontal
waveguide, while the remaining 1 − α fraction of the power
can be observed at the through port on the first horizontal
waveguide. In on-resonance state, all power from the input
will be coupled to the drop port and in off-resonance, all
power from the input will continue to the through port. In the
passive photonic layers of the LSPA architecture, the MRRs
are passive devices that are only used to filter wavelengths and
couple optical signals between layers. In the passive photonic
layers of the LSPA architecture, the MRRs are passive devices
that are only used to filter wavelengths and couple optical
signals between layers.

C. DNN Operations

A convolutional layer in DNN models is typically described
using eight indices: the height ⟨r⟩ and width ⟨s⟩ of weight
kernels, the height ⟨e⟩ and width ⟨f⟩ of output feature channels,
the height ⟨h⟩ and width ⟨w⟩ of input feature channels, the
number of input feature channels ⟨c⟩, and the number of
output feature channels ⟨k⟩. Since the indices ⟨h⟩ and ⟨w⟩
can be derived from the other four indices, each convolutional
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Fig. 4. Forward pass with LSPA devices using vertical coupling of light when
supplying light from waveguide HW1 and measuring the output dot product
at the output of waveguide VW2. The notation Mij is used to indicate the
jth MRR on the active photonic layer (i = 0) or the ith passive photonic
layer. The notation mij is used to indicate the jth photonic-PCM cell on the
ith passive photonic layer.

Fig. 5. Backward pass with LSPA devices using vertical coupling of light
when supplying light from waveguide VW1 and measuring the output dot
product at the output of waveguide HW2. Backward pass operation is
performed in the opposite direction so that photonic-PCMs do not have to
be re-programmed with new weights.

layer can therefore be presented as a six-element vector
⟨R, S, E, F, C, K⟩, wherein each element indicates the range
of a respective index. The forward pass of a DNN layer entails
sliding the weight kernels across the input feature channels
and performing the dot product operations between weight
vectors Y and input feature vectors X in the respective sliding
window, as shown in Equation 1.

Oefk =
∑
c

∑
s

∑
r

Yrsck ×Xr+e,s+f,c (1)

The output features of layer i are first derived and then taken
as input features of the subsequent DNN layer, i+1 after being
processed by a proper activation function σi, where i is the
layer index. The backward pass of a DNN layer is performed
by sliding the weight kernels across the horizontally and
vertically flipped output feature gradient channels and the dot
product operations are performed between weight vectors and
output feature gradient vectors in the corresponding sliding
window, as shown in Equation 2.

δL

δXhwc
=

∑
k

∑
s

∑
r

Yrsck × δL

δOh−r,w−s,k
(2)

Those flipped output feature channels are zero-padded to
ensure the proper dimension sizes of the generated input
feature gradient channels. Input feature gradients on the gen-
erated input feature gradient channels are positioned in a

horizontally and vertically flipped manner, as compared to
the respective original input feature channels. The reason for
the flipped arrangements of output and input feature gradient
channels is the negative signs of both the ⟨r⟩ and ⟨s⟩ indices
in Equation 2. Note the accumulation of the multiplications
Yrsck × δL/δOh−r,w−s,k is performed along both ⟨r⟩ and ⟨s⟩
dimensions, as well as the ⟨k⟩ dimension. Updating the weight
kernels of a DNN layer is achieved by sliding the output
feature gradient channels across the input feature channels and
performing the dot product operations between output feature
gradient vectors and input feature vectors in the corresponding
sliding window, as shown in Equation 3. Figure 8 illustrates
the dot product operations during the weight updating process
of the same convolutional DNN layer. The weight gradients
are derived and exploited to update the weight kernels of the
current DNN layer on either a per-example or a per-mini-batch
basis.

δL

δYrsck
=

∑
f

∑
e

δL

δOefk
×Xr+e,s+f,c (3)

III. LSPA ACCELERATOR ARCHITECTURE

A. LSPA Dot Product

Figure 4 illustrates the forward pass working schemes of the
vertical accumulation operation. The wavelengths λ1, λ2, λ3,
and λ4 are coupled to MRR M01 in the clockwise direction
and then vertically coupled to MRRs above it (M11, M21,
M31, M41). At each vertical layer, a specific wavelength is
filtered out, attenuated by the respective photonic-PCM cell,
and then coupled back to another MRR (M12, M22, M32,
M42). The vertically stacked MRRs [49], [50] working at the
on-resonance state extract a particular resonant wavelength
[51] and couple it back after attenuation. Wavelengths are
spaced at least 0.8 nm apart [52], [53], [54] and photonic layers
are spaced 5 µm apart to prevent crosstalk and interference
between layers [55]. Photonic-PCM cells are pre-programmed
with weight kernel values using optical pulses. The influence
of dispersion in PCM attenuation can be neglected in the 180-
205 THz wavelength range and be corrected by adjusting the
input amplitudes of different wavelengths [23].

For instance, wavelength λ1 is coupled to a local waveguide
from M11, attenuated by photonic-PCM cell m11, then cou-
pled to M12, and eventually measured at waveguide VW2. By
contrast, the working scheme shown in Figure 5 describes how
the light coming from waveguide VW1 is vertically coupled,
attenuated, and then measured at waveguide HW2 for the
backward pass. Backward pass operation is performed in the
opposite direction so that photonic-PCMs do not have to be
re-programmed with new weights between the forward and
backward passes or subsequent forward passes. By using a
different frequency range for waveguides on the y-axis of the
active photonic layer and WDM, rose-wise and column-wise
accesses double the inputs which can be multiplied with the
weights stored on the passive photonic layers simultaneously.
If the model is already trained and backward passes are not
needed, the second direction is used for a second forward pass.
This minimizes reprogramming of photonic-PCM cells which

4
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Fig. 6. A sample LSPA stack architecture with an electrical layer, an active photonic layer, and four passive photonic layers. The drivers on the electrical layer
are electrically connected to microring resonators (MRRs) working as attenuators on the active photonic layer through vertical through-silicon-vias (TSVs).
The transimpedence amplifiers (TIAs) on the electrical layer are electrically connected to photodetectors on the active photonic layer through TSVs. Light is
coupled vertically between the active photonic layer and passive photonic layers [49].

is costly in terms of both laser energy and latency. Figure 6
shows the LSPA accelerator stack with four passive photonic
layers where each layer integrates four photonic-PCM cells.

B. LSPA Stack Architecture

Each LSPA accelerator stack includes an electrical layer, an
active photonic layer, and several passive photonic layers. The
LSPA accelerator architecture includes multiple LSPA stacks
whose passive photonic layers are connected to the laser source
using space-division multiplexing. Meanwhile, their electrical
layers are connected through a 2D electrical torus network to
support data exchange between stacks in the digital domain.

1) Electrical Layer: As shown in Figure 6, the electrical
layer includes a global buffer for temporary data storage,
two sets of digital-to-analog converters (DACs) for converting
input feature vectors and output feature gradient vectors from
the digital domain to the analog domain in forward and
backward passes, respectively, two sets of analog-to-digital
converters (ADCs) for converting output feature vectors and
input feature gradient vectors from the analog domain to the
digital domain in forward and backward passes, respectively. It
is the electrical layer’s components, ADCs, DACs, and TIAs,
that determine the stack footprint, not the photonic layers.
Other peripheral functions such as the activation and derivative
function of the activation function σi as well as the calculation
of the weight gradients are performed digitally in this layer.
The drivers and transimpedance amplifiers (TIAs) on this layer

Fig. 7. Overview of interaction between electrical components and photonic
processing layers.

are electrically connected to the MRRs and photodetectors on
the active photonic layer vertically using through-silicon-vias
(TSVs). The electrical layer also serves as the bridge between
LSPA stacks since the electrical layers are connected in a
2D torus network (more explanation in Section 4). The torus
allows for numerous LSPA chips to be connected for system
scaling similar to a systolic array such as TPU-v4 [56]. An
overview of how the electrical components interact with the
photonic layers is shown in Figure 7

2) Active Photonic Layer: The active photonic layer is
positioned between the electrical layer and the first passive
photonic layer. Its functions include performing optical signal
attenuation and photocurrent detection, as well as evenly
distributing optical power along two planar dimensions. Figure
6 shows the architecture of an active photonic layer in green.
MRRs attached to waveguides HW1, HW3, V W1, and VW3

are driven by the respective devices on the electrical layer
to generate input feature or output feature gradient vectors
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for dot product operations. As shown in Figure 6, the two
directional couplers attached to MRR M03 are utilized to
couple the incoming light from waveguide HW1 to the MRR
M03 and the outgoing light from the MRR M03 to waveguide
HW2. By tuning the split ratios of the directional couplers
at fabrication time, light power coming from waveguides
HW1 and HW3 can be evenly distributed to MRRs M01 and
M03, and MRRs M05 and M07, respectively. Similarly, the
light power coming from waveguides VW1 and VW3 can be
evenly distributed to MRRs M02 and M06, and MRRs M04

and M08, respectively. By using MRRs for filtering only, no
tuning power is required for MRRs in LSPA. The functions
of the active photonic layer include (1) generating input
feature or output feature gradient vectors, (2) row-wise and
column-wise multicasting the generated vectors and initiating
accumulation along ⟨r⟩ and ⟨s⟩ dimensions, (3) collecting
vertically accumulated intermediate results and performing
accumulation in a third dimension, and (4) measuring the
final results using photodetectors. LSPA’s custom architecture
accommodates data movement in the ⟨k⟩ and ⟨c⟩ dimensions,
which is typical of 2D transposable memory [57], as well as
the ⟨r⟩ and ⟨s⟩ dimensions.

3) Passive Photonic Layers: Figure 6 shows the archi-
tecture of the ith passive photonic layer in yellow where a
pair of MRRs (e.g., Mi1 and Mi2) are connected through a
local waveguide and a photonic-PCM cell is positioned on
top of the local waveguide to perform light power attenuation.
The passive photonic layers are identical to each other and
can be stacked to scale the LSPA architecture to various
sizes. The photonic layers are aligned and vertically stacked
to ensure seamless coupling of corresponding MRRs. When
transitioning LSPA from a theoretical model to a practical
deployment, anticipated challenges and considerations when
bonding individual layers include layer alignment to ensure
efficient optical coupling and minimal losses [58], material
compatibility to avoid thermal mismatch [45], and fabrication
costs [59]. Fabricating and aligning 10 layers in silicon pho-
tonics accurately is already feasible [60], [61], [62].

4) Negative Values: Analog computations in the photonic
domain are not limited to positive numbers. The electric field
of a photonic waveform is a sinusoidal function that oscillates
between positive and negative values. However, photodetectors
measure the intensity of photonic signals rather than amplitude
and the negative and positive values of the electric field result
in the same measured intensity, making direct detection insen-
sitive to the sign of the amplitude. To encode negative values
in photonic accelerators, phase shifting is utilized [63], [64],
[65]. The total electrical field collected at the photodetectors
is defined by Equation 4. An is the amplitude of signal n. ϕ is
the phase shift of signal n [66]. ωn is the angular frequency of
signal n defined by ω = 2πc

λ where c is the speed of light in a
vacuum, 3.0× 108 m/s and λ is the wavelength of the signal
which matches the resonant wavelength the corresponding
MRR in an LSPA passive photonic layer.

E(t) =
∑
n

Ane
i(ωnt+ϕn) (4)

The intensity I(t) detected by the photodetector collecting
partial sums on the active photonic layer is described by
Equation 5 where ε0 is the permittivity of free space, c is
the speed of light, and |E(t)|2 is the square of the magnitude
of the electric field.

I(t) =
ε0c|E(t)|2

2
(5)

The photocurrent collected by the photodetector, Ip is equal
to I(t)∗Rd where Rd is the responsivity of the photodetector.
The photodetector’s output analog voltage is equal to V =
Ip∗R where R is the load resistance. A key takeaway from the
definition for the intensity of light is that the intensity of light
I(t) is directly proportional to the square of the magnitude of
the electric field.

I(t) ∝ |E(t)|2 (6)

The square of the magnitude of the total electric field |E(t)|2
is expanded out in Equation 7.

|E(t)|2 =
∑
n

A2
n+2

∑
n<m

AnAmcos[(ωn−ωm)t+(ϕn−ϕm)]

(7)
For two signals with ω1 and ω2, the intensity will oscillate
between a maximum and a minimum over time, as the signals
interfere. The detected intensity will vary as a function of the
beat frequency ∆ω = ω1 − ω2. Making the phase difference
[(ωn − ωm)t + (ϕn − ϕm)] an odd multiple of π, the cosine
term will be -1, thus implementing negative numbers.

Negative values are handled in LSPA by always using
positive weight values in photonic-PCM cells and encoding
negative input values where needed using phase shifters after
laser encoding and before the active photonic waveguides.
LSPA uses MRRs to modulate the incoming laser source
and encode input values onto each wavelength. The necessary
phase shift is also introduced by these MRRs.

C. LSPA Stack Operation

1) Forward Pass Execution: Please note the terminology
Mij is used to indicate the jth MRR on the active photonic
layer (i = 0) or the ith passive photonic layer. On the
active photonic layer, four MRRs attached to the horizontal
waveguide HW1 are employed to attenuate the power levels
of respective wavelengths λ1, λ2, λ3, and λ4 from the laser
source to represent an input feature vector as described in
Algorithm 1.

With directional couplers on the active photonic layer, input
features are shared along the ⟨k⟩ dimension. The directional
coupler between the horizontal waveguide HW1 and MRR
M01 exhibits a split ratio of 0.5, hence, coupling half of the
power of wavelengths λ1−4 to the MRR M01 while forwarding
the remaining half downstream. The directional coupler be-
tween the horizontal waveguide HW1 and MRR M03 exhibits
a split ratio of 1, hence, coupling all the remaining power
of wavelengths λ1−4 to the MRR M03. In this way, the same
input feature vector is present at two MRR locations, M01 and
M03. Similarly, another four MRRs attached to the horizontal
waveguide HW3 are employed to attenuate the power levels of
respective wavelengths λ5−8 from the laser source to represent
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Algorithm 1 Forward Pass Input Assignment Algorithm
Input Wavelength Assignment ▷ given L, the number of wavelengths, and
dimensions H, W, and C
for c = 1 to C do

for h = 1 to H do
for w = 1 to W do

λl ← Xhwc

l← l + 1
if l > L then

l← 1
end if

end for
end for

end for
Photonic-PCM Cell Weight Assignment ▷ given I , the number of passive photonic
layers, J , the number of PCM per layer, and dimensions R, S, C, and K
i = 1, j = 1
for r = 1 to R do

for s = 1 to S do
for c = 1 to C do

for k = 1 to K do
mij ← Yrsck

j ← j + 1
if j > J then

j ← 1
end if

end for
end for
i← i + 1

end for
end for

another input feature vector at two MRR locations, M05 and
M07. Partial accumulations collected at MRRs M02 and M06

are combined in the shared waveguide VW2 and measured
the by the photodetector at the end of VW2. Similarly, partial
accumulations collected at MRRs M04 and M06 are combined
and measured by waveguide VW3 and it’s photodetector.

The accumulation of partial sums along both ⟨r⟩ and ⟨s⟩
dimensions are achieved using clusters of vertically aligned
photonic-PCM cells in the passive photonic layers. Please note
the terminology mij is used to indicate the jth photonic-PCM
cell on the ith passive photonic layer. Photonic-PCM cells
are programmed to attenuation factors representing weights
as described in Algorithm 1. In sequential clock cycles, input
feature vectors from different sliding windows are supplied
from the electrical layer to the active photonic layer to generate
the output features.

2) Backward Pass Execution: On the active photonic layer,
four MRRs attached to the vertical waveguide VW1 are em-
ployed to attenuate the power levels of respective wavelengths
λ1, λ2, λ3, and λ4 from the laser source to represent an output
feature gradient vector as described in Algorithm 2.

The directional couplers between the vertical waveguide
VW1 and MRRs M06 and M02 split the power of wavelengths
λ1, λ2, λ3, and λ4 equally to present the same output feature
gradient vector at both MRRs. Similarly, another four MRRs
attached to the vertical waveguide VW3 are employed to atten-
uate the power levels of respective wavelengths λ5, λ6, λ7, and
λ8 from the laser source to represent another output feature
gradient vector and couplers split the vector between two MRR
locations, M08 and M04. This is how the sharing of output
feature gradients is facilitated along the ⟨c⟩ dimension during
backward pass execution.

The accumulation of multiplications along both
⟨r⟩ and ⟨s⟩ dimensions are achieved by reusing the
clusters of vertically aligned photonic-PCM cells in the

Algorithm 2 Backward Pass Input and Weight Assignment
Algorithm

Input Wavelength Assignment ▷ given L, the number of wavelengths, and
dimensions H, R, W, S, and K
for k = 1 to K do

for r = 1 to R do
for s = 1 to S do

λl ← δL
δOh−r,w−s,k

s← s + 1
l← l + 1
if l > L then

j ← 1
end if

end for
end for

end for
Photonic-PCM Cell Weight Assignment ▷ given I, the number of passive photonic
layers, J the number of PCM per layer, and dimensions R, S, C, and K
for c = 1 to C do

for k = 1 to K do
for r = 1 to R do

for s = 1 to S do
mij ← Yrsck

j ← j + 1
if j > J then j ← 1
end if

end for
end for
i← i + 1

end for
end for

Fig. 8. Dot product operation during the forward pass in convolutional layer
⟨R, S, E, F, C, K⟩ = ⟨2, 2, 2, 2, 2, 2⟩. The computation of output feature
O111 is highlighted.

backward pass execution as described in Algorithm 2.
Please note the weights programmed in photonic-PCM cells
remain unchanged during the transition between forward and
backward passes. In each clock cycle, output feature

gradients from different sliding windows are supplied from
the electrical layer to the active photonic layer to generate
the remaining input feature gradients.

3) Weight Update execution: The weight gradients are
calculated on the electrical layer in the digital domain. The
updating of weights programmed in the photonic-PCM cells is
achieved by encoding the updated weights on the wavelengths
and forwarding them to the respective cells [23], reusing the
architecture and mechanism described in the forward pass
execution section.

4) Executing Other NN Operations: While LSPA is opti-
mized for CNN models which share weights across different
input regions, other NN models can also be executed and
expedited with LSPA. Reinterpreting operations into convo-
lutions allows other model types to be mapped to LSPA. For
example, fully connected layers can be viewed as convolutions
with large kernel sizes and specific stride patterns. Mapping
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Fig. 9. 4 LSPA stacks connected by torus network on electronic layer

(a) (b)

Fig. 10. Top-down View of torus connecting electronic layers of LSPA
stacks showing data movement during (a) forward pass and (b) backward
pass occurring in parallel

transformer NN models onto LSPA involves decomposing
the transformer computational structure into a form suitable
for parallel and efficient execution, particularly matrix-heavy
operations. Each transformer attention block uses several
linear layers for generating query, key, and value matrices
from inputs, which are essentially matrix multiplications that
map directly onto LSPA’s input drivers and weight matrix
photonic-PCM cells (Q = XWQ, K = XWK , and V =
XWV ). Linear transformations and activations are similarly
suited to optical computation, where matrix-vector products
are performed in parallel across the photonic array, and
nonlinear activation functions, such as GeLU or ReLU, can
be implemented in the digital domain on the electronic layer.
Subsequent operations in the attention mechanism, such as dot-
product attention (Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V ),

require additional stages: first a matrix multiplication (QKT ),
a softmax normalization, and a final matrix multiplication with
V . The QKT operation is particularly well-suited for photonic
matrix multiplication, while softmax is approximated using
low-power electronic post-processing. Thus, the transformer’s
heavy reliance on linear algebra operations aligns naturally
with LSPAs strength in high-throughput, parallel, low-latency
matrix computations. LSPA’s memory hierarchy and torus
network connecting stacks are designed to keep data close to
processing units and minimize hops between stacks to 1 at all
times, minimizing latency and bandwidth bottlenecks during
processing.

IV. DATAFLOW AND PIPELINING

To use LSPA for large-scale NN models, multiple LSPA
stacks are combined in a torus network so tiling can be used.
We map the NN model parameters to LSPA stacks so that
1 hop maximum is needed between clock cycles. Figure 9
shows an example of 4 LSPA stacks connected in a torus

Fig. 11. LSPA pipeline that leverages parallelism between forward pass (FP)
and backward pass (BP) of examples in the same mini-batch. Forward pass
through layers 1, 2, 3 and then backward pass through the same layers 3, 2,
1 are executed for each example.

network on the electronic layer to share data between stacks.
In the example shown in Figure 10a, each input feature Xhwc

is mapped to LSPA stacks such that each row of LSPA
stacks shares the same c index. The input features for c = 1
are mapped to the bottom row where each LSPA stack is
pre-programmed with weight kernel Yrsck where c = 1.
Multiplication with the weights stored in the passive photonic
layers happens in one cycle. The weights kept in each LSPA
stack’s passive photonic layers do not change between cycles,
only the inputs are forwarded from one LSPA stack to the next
stack in the row to be multiplied with the next set of weights.
Because of this dataflow pattern, connections between rows of
LSPA stacks are not needed.

Assume that a three-layer sample DNN is performed on the
LSPA accelerator architecture where each stack accommodates
the weight kernels of a respective layer. The training process of
an example exhibits a sequential order. Though the separation
of the forward and backward modes of LSPA architecture
eliminates the need to perform costly weight matrix reordering
or duplication, only one of the two modes is utilized at any
time, leading to low hardware utilization. We therefore explore
the parallelism between examples in the same mini-batch to
improve hardware utilization. As the size of neural network
and programming operations increase, multiple LSPA stacks
are used to implement more static weights and minimize re-
programming PCM cells. Weight stationary data flow is also
used to mitigate the impact of growing neural networks.

Figure 11 shows the situation of processing a mini-batch
of several examples of a three-layer neural network on three
stacks. We still assume that each stack can fully accommodate
the parameters and computation operations of a corresponding
layer. The forward passes of layer 1 for examples 1 through
6 are processed by stack 1. As the time slots progress,
stacks 2 and 3 are utilized to process the second and third
layers of the forward pass (FP) for all examples. At T4 the
backward mode sections begin processing the backward pass
of each layer for each example. T6 marks the completion
of example 1 and the starting point of the full utilization
of both mode sections of all three stacks. If only focusing
on one example, it will adhere to the sequential order and
take six steps to finish. However, by enabling parallelism
between examples in the same mini-batch, we can completely
fill the pipeline before the end of the current mini-batch. At
the end of each mini-batch or processing tile, the weights
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are updated optically with picosecond pulses [19] by reusing
the wavelength associated with each cell. Vertically aligned
cells in different layers are programmed simultaneously using
their respective wavelengths. The pipeline utilization depends
on two factors: mini-batch size and the number of pipelined
layers.

A. Stochastic Gradient Descent Case

Following the assumption that a three-layer neural network
can be accommodated by three LSPA stacks, each storing the
weight kernels of a respective layer, the adoption of the LSPA
pipeline can significantly reduce the execution time. Assume
that the number of pipelined layers is l (l = 3 in this case)
and the number of clock cycles required for photonic-PCM
array updating is ω. For a regular pipeline, the overall clock
cycles required to process a training example is 2l + 2ω. In
contrast, for the proposed LSPA pipeline, the overall clock
cycles required to process a training example is 2l + ω. The
reduction is because the LSPA pipeline does not require the
additional ω clock cycles to update the weight kernels from the
original format to its transposed format between the forward
and backward passes. Whether using a regular pipeline or an
LSPA pipeline, each stack requires sufficient buffer space to
store input features, output features, output feature gradients,
input feature gradients, and weight gradients.

B. Mini-Batch Gradient Descent Case

Following the assumption that a three-layer neural network
can be accommodated by three LSPA stacks, each storing the
weight kernels of a respective layer. The adoption of the LSPA
pipeline can reduce the execution time as well as decrease
local buffer space. Assume that the number of pipelined layers
is l (l = 3 in this case), training batch size is b, and the number
of clock cycles required for photonic-PCM array updating is
ω. For a regular pipeline, the overall clock cycles required to
process a training batch is 2l+ b+2ω−2. In contrast, for the
proposed LSPA pipeline, the overall clock cycles required to
process a training batch is 2l+b+ω−1 The reduction mainly
comes from the fact that the LSPA pipeline does not require
the additional ω clock cycles to update the weight kernels
from the original format to its transposed format between the
forward and backward passes.

V. RELATED WORKS

Several recent advancements have explored the integration
of photonic technologies into DNN accelerators with the
goal of improving both performance and energy efficiency.
ASCEND [73] is a chiplet-based accelerator that utilizes a
custom photonic interconnect network to enable seamless
intra- and inter-chiplet broadcast communication. The AS-
CEND photonic network supports the flexible mapping of
diverse convolutional layers, thereby mitigating the scalability
limitations of traditional metallic interconnects. However, AS-
CEND relies entirely on electronic processing elements and
is constrained by its optical-electrical (O/E) and electrical-
optical (E/O) conversion mechanisms, which are limited to

TABLE II
LSPA DEVICE PARAMETERS

Device Parameter Value
Resolution 8-Bit

DAC [67] Power 50mW
Speed 14GS/s
Area 11, 000µm2

Resolution 8-Bit
ADC [68] Power 15mW

Speed 10GS/s
Area 2, 850µm2

TIA [69] Power 3mW
Area 11, 000µm2

Tuning Power 0.2mW [70]
Microring Resonator Insertion Loss 0.01dB [71]

Area 93µm2

Power 1.1mW [72]
Photodetector Area 40µm2 [72]

Sensitivity −25dBm [23]
Directional Coupler Insertion Loss 0.1dB [23]

Coupling Length 10µm [23]
Waveguide Crossing Insertion Loss 0.03dB [23]
Microcomb Area 1.4mm2 [70]
Laser Source Wall-Plug Efficiency 0.2 [70]

Array Size 32× 32
Photonic-PCM Cell Size 30µm× 30µm [23]

Cell Tuning Pulse 200ns [23]
Resolution 8-Bit [42], [43]

1-bit per cycle due to the design of its transmitters and
receivers. This restriction presents a significant throughput
bottleneck. MDA [74] introduces a high-performance and
energy-efficient photonic architecture specifically optimized
for the concurrent execution of multiple DNNs. MDA employs
a dynamically reconfigurable silicon photonic network that can
be segmented to interconnect allocated compute resources.
This flexibility allows the communication infrastructure to
adapt to the dataflow patterns of individual DNNs, thereby
improving both computational efficiency and scalability. How-
ever, MDA is still limited to 1-bit per cycle E/O and O/E
conversions due to its transmitters and receivers. PTC [23]
is an analog photnic accelerator that integrated photonic-
PCM into photonic waveguides to store weights and perform
multiply-accumulate (MAC) operations. By exploiting optical
interference and photodetection, PTC enables in-memory com-
puting with high bandwidth and low latency. LSPA extends
the use of photonic-PCM by not only utilizing photonic-PCM
for non-volatile memory and in-memory MAC operations but
also by incorporating 8-bit DACs and ADCs to facilitate high-
resolution O/E and E/O conversions. Unlike PTC, LSPA is
designed to support both inference and training by enabling
parallel forward and backward passes, thus avoiding frequent
weight reprogramming. This architectural innovation signifi-
cantly increases throughput and power efficiency, particularly
in compute-intensive training scenarios.

VI. EVALUATION METHODOLOGY

A. Evaluation Setup

We extend the open-source ASTRA-Sim simulator [75] to
model the proposed LSPA and other baseline architectures
in both training and inference tasks. The energy and latency
of training are simulated using ASTRA-Sim to model both
the communication protocols and hardware behavior of the
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evaluated architectures, enabling accurate estimation of total
energy consumption and execution time across diverse neural
network models, based on parameter counts and model sizes.
The computation load for all analog computing baselines
(Pipelayer, DEAP, PTC) and LSPA is derived based on the
total number of operations, operating frequency, and active
device count. The communication volume is dictated by the
DNN model under evaluation and is uniformly applied across
all baselines. To ensure a fair comparison, all architectures are
constrained to a 400 mm2 die fabricated in 5 nm technology,
equipped with 16-bit precision arithmetic, 32 MiB of on-chip
SRAM, 32 GiB of High-Bandwidth Memory (HBM), and a
total off-chip memory bandwidth of 1200 GB/s.

We use the same restrictions when setting up GPU, FPGA,
and CPU accelerators for a fair comparison. The GPU baseline
is modeled with approximately 60 Streaming Multiprocessors
(SMs), each equipped with 128 KB of L1 cache. The chip
includes a 32 MiB shared L2 cache and leverages 32 GiB of
HBM2e organized into 4 stacks, each with 8 channels at 300
GB/s bandwidth, yielding a total of 1200 GB/s. To remain
within the 400 mm budget, the architecture allocates roughly
60% of area to compute units, 20% to SRAM/cache, and
20% to interconnect and peripheral logic. The design supports
tensor core acceleration for FP16 operations, achieving a peak
throughput of approximately 50 TFLOPs.

The FPGA baseline consists of a dense array of configurable
logic blocks (CLBs) optimized for 16-bit arithmetic, along
with approximately 15,000 DSP slices for high-throughput op-
erations. The architecture includes 32 MiB of distributed block
RAM, configurable as scratchpad or cache, and interfaces with
32 GiB of HBM2e via a 2.5D silicon interposer. The HBM
is partitioned into 4 stacks, each with 300 GB/s bandwidth.
The die area is apportioned as 60% for compute fabric, 25%
for memory/cache and controllers, and 15% for NoC and
peripheral logic. The estimated peak FP16 throughput is 25
TFLOPs, reflecting realistic DSP-backed acceleration.

The CPU baseline is composed of 64 out-of-order cores,
each equipped with 64 KB of L1 cache and 512 KB of private
L2 cache. A shared 32 MiB L3 cache spans the entire chip in
a multi-banked configuration to support high bandwidth and
low contention. SIMD acceleration is supported via 512-bit
wide vector units (AVX-512 class), enabling efficient 16-bit
operations. The memory system includes 32 GiB of HBM2e
organized into 4 stacks, each delivering approximately 300
GB/s, for a total bandwidth of 1200 GB/s. The estimated peak
FP16 throughput is 12 TFLOPs, constrained by the available
core count, vector width, and achievable clock frequency
within the area and power budget. While this configuration is
optimistic relative to typical general-purpose server CPUs, it
is intended to represent a DNN-optimized manycore processor
fabricated in 5 nm technology and confined to a 400mm2

die. The model assumes high SIMD utilization and efficient
memory access, more characteristic of custom accelerator-
class CPUs than conventional data center architectures.

The key parameters of LSPA architecture are listed in Table
II. We assume 8-bit ADC and DAC modules as we assume the
photonic-PCM cell resolution is 8-bit. We choose ADC and
DAC modules with very high (over 10GS/s) speed as their

sampling rate determines the operating speed of the overall
LSPA architecture. As a result, the power consumption and
area of such high-speed ADC and DAC modules are relatively
high. We determine the number of LSPA stacks per chip to
be 16 with their electrical layers connected by a 2D torus
network and HBM channels evenly distributed to each stack.
Current 2.5D CoWoS (Chip on Wafer on Substrate) technology
supports configurations of up to 8 chiplets integrated with
high bandwidth memory (HBM) [76], [77]. While 16 LSPA
stacks are not yet feasible, research is moving towards 3D IC
integration with larger numbers of chiplets. We determine the
size of the photonic-PCM cell array per passive photonic layer
to be 32× 32 and the number of passive layers to be 9 since
3 × 3 weight kernels are common for NN models, including
those evaluated [2], [3], [1], [4], [78] [79], and up to 10 bonded
layers are feasible for current technology [60], [61], [62]. An
8× 8 array has been prototyped and published in Nature [23]
while a 64×64 array is projected [23]. A larger array size will
lead to significantly higher laser power consumption. But this
threshold is higher than in conventional 2D design [39] due
to the additional vertical dimension. It is possible to connect
numerous LSPA chips for system scaling similar to a systolic
array such as TPU-v4 [56]. For details, please refer to the
power model section below.

B. Power Model

The power consumption of the off-chip laser source
(P1aser) is obtained from Equation 8, when assuming the
photodetector sensitivity Prs = −25dBm and the system
margin Csystem = 4dB. Note that the overall insertion loss
Closs is obtained by accumulating the insertion loss of each
component along a silicon photonic communication channel.
The power consumption per wavelength is 2.5 mW. The energy
values of the laser and other peripheral circuitry (DACs,
ADCs, TIAs, and photodetectors) are 0.06 nJ and 1.77 nJ,
respectively.

Plaser = Prs + Closs +Msystem (8)

The proposed LSPA architecture is compared against other
state-of-the-art digital and analog computing systems for DNN
training tasks using a 16-bit fixed-point data format when
using two photonic-PCM cells to represent each weight,
LSPA-16, and 8-bit weights with one photonic-PCM cell each,
LSPA-8. The same 8-bit ADCs are used for LSPA-16 but
with lowered throughput since two samples are needed to
capture each 16-bit value. The result is combined in the
electrical layer using bit-shifting to reconstruct a 16-bit value.
Similarly, LSPA-32 can be executed with four pbotonic-PCM
cells to represent each 32-bit weight and four ADC samples
to read the result which is reconstructed with bit-shifting in
the control unit on the electrical layer. Typical deep learning
models cannot fully fit in only photonic PCM cells. These
cells are considered a medium for computation. Each LSPA
chip is equipped with 32MiB SRAM and connected to 32GiB
HBM for data storage as [56]. The adopted weight-stationary
dataflow minimizes data movement to 1 hop maximum but
does not completely eliminate data movement. In the presence
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Fig. 12. Execution time comparison for training.

Fig. 13. Energy comparison for training.

of a mismatch between hardware resource demand and provi-
sion, tiling operations with multiple LSPA stacks are required
as described in Section IV.

Baseline TPU [80] is a digital systolic-array-based com-
puting system with 8-bit data width. We extend it to support
16-bit training at the cost of lowering its throughput. Baseline
Pipelayer [10] is an analog memristor-based electrical comput-
ing system with 16-bit data width for training. Baseline DEAP
[16] is an analog MRR-based photonic computing system
with a 6-bit data width. We raise its data width to 16-bit for
training tasks by performing a multiple-accumulate operation
on multiple MRRs. Baseline PTC is an analog photonic-PCM-
based photonic computing system with a 5-bit data width [23].
We take an approach similar to [10] to raise its data width.

C. Evaluation Benchmarks

We choose six DNN models for evaluation: VGG-16 [3],
ResNet-50 [1], GoogLeNet [4], using the ImageNet dataset,
as we ll as Google Neural Machine Translation (GNMT) [78]
using the WMT16 EN-DE dataset, Transformer [79] using
the WMT17 EN-DE dataset and LLaMA 7B and LLaMA
30B [81] using the SuperGLUE dataset [82]. VGG-16 has
16 weight layers, 13 convolutional and 3 fully connected,
which are organized into 5 convolutional blocks each followed
by a max-pooling layer for a total of 21 layers and 138
million parameters [3]. Resnet-50 which has 50 layers in total
including convolutional layers, batch normalization, ReLU
activations, 16 residual blocks, and 25.6 million parameters
[1]. GoogLeNet has 22 layers consisting of multiple inception
modules that each have multiple convolutional layers and a
pooling layer and a total of 6.8 million parameters. GNMT
has a total of 16 layers, 8 in the encoder and 8 in the decoder,
and 1 billion parameters [78]. The Transformer model used is
the original Transformer model with 6 encoder layers and 6
decoder layers and 213 million parameters [79]. LLaMA 7B
has 32 transformer layers and 7 billion parameters [81], and
LLaMA 30B has 60 transformer layers with 30 billion parame-
ters [81]. Typical deep learning models cannot fully fit in only

photonic PCM cells. These cells are considered a medium for
computation. Each LSPA chip is equipped with 32MiB SRAM
and connected to 32GiB HBM for data storage as [56]. The
adopted weight-stationary dataflow minimizes data movement
to 1 hop maximum but does not completely eliminate data
movement. In the presence of a mismatch between hardware
resource demand and provision, tiling operations with multiple
LSPA stacks are required as described in Section IV.

VII. EXPERIMENT RESULTS

A. DNN Training

Execution Time: Figure 12 shows the execution time com-
parison of LSPA against other baseline architectures when
assuming a mini-batch size of 128. LSPA reduces the average
execution time for DNN training by 52% compared to TPU,
27% compared to Pipelayer, 34% compared to DEAP, 34%
compared to PTC, 65% comopared to the FPGA, 56% com-
pared to the GPU, and 92% compared to the CPU. In general,
LSPA reduces training execution time by 51% on average.
Energy Consumption: Figure 13 shows the energy consump-
tion comparison of LSPA against other baseline architectures
when assuming a mini-batch size of 128. LSPA reduces
average training energy consumption by 31% compared to the
TPU, 18% compared to Pipelayer, 17% compared to DEAP,
16% compared to PTC, 51% compared to the FPGA, 41%
compared to the GPU, and 90% compared to the CPU. In
general, LSPA reduces training energy consumption by 38%
on average. The reduced execution time and energy of LSPA
is attributed to the high speed and high computation density
of the unique 3D photonic architecture. Other analog comput-
ing including Pipelayer (resistive memory technology-based),
DEAP-CNN (MRR-based), and PTC (photonic-PCM based)
require more off-chip DRAM accesses and tuning operations
for their respective analog devices as they accommodate both
the original and the transposed weight matrices needed for
training. LSPA maintains a significant number of weights
encoded in the photonic-PCM cells and reuses weights in both
forward and backward passes during training, greatly reducing
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Fig. 14. Execution time comparison for inference.

Fig. 15. Energy comparison for inference.

TABLE III
COMPUTATION DENSITY AND ENERGY EFFICIENCY

Architecture TOPS/mm2 TOPS/Watt
TPU [56] 0.69 1.62
FPGA 0.06 0.10
Pipelayer [10] 3.56 2.12
DEAP [16] 10.29 2.45
PTC [23] 20.51 5.13
GPU 0.125 0.17
CPU 0.030 0.06
LSPA-16 47.61 11.58
LSPA-8 184.37 41.45

Fig. 16. Execution time breakdown comparison between PTC and LSPA
when performing stochastic gradient training of VGG-16 model.

DRAM accesses and tuning time which reduces execution
time more significantly than energy consumption. The CPU
baseline exhibits significantly higher execution time and en-
ergy consumption compared to specialized accelerators due
to its general-purpose architecture. Unlike GPUs or photonic
accelerators, the CPU lacks highly parallel compute units and
tensor cores optimized for matrix operations, resulting in lower
throughput and longer runtimes for DNN workloads.

B. DNN Inference

Execution Time: The execution time comparison of LSPA
against other baseline architectures for inference is shown in
Figure 14. LSPA reduces the average execution time of DNN
inference by 53% compared to the TPU, 26% compared to
Pipelayer, 34% compared to DEAP, 33% compared to PTC,
65% compared to the FPGA, 56% compared to the GPU, and
92% compared to the CPU. In general, LSPA reduces inference
execution time by 51% on average.

Fig. 17. Energy consumption breakdown comparison between PTC and LSPA
when performing stochastic gradient training of VGG-16 model.

Energy Consumption: The energy consumption comparison
of LSPA against other baseline architectures for inference is
shown in Figure 15. On average, LSPA reduces inference
energy consumption by 41% compared to TPU, 19% compared
to Pipelayer, 17% compared to DEAP, 16% compared to PTC,
35% compared to the FPGA, 17% compared to the GPU,
and 51% compared to the CPU. In general, LSPA reduces
inference energy consumption by 28% on average. Similar
to training, high speed computation of photonic devices and
high computation density because of LSPA’s parallelizable
3D architecture are mainly responsible for the reduction in
execution time and energy. Performance is further optimized
by a weight stationary dataflow that minimizes high latency
and high energy photonic-PCM tuning.

C. Breakdown Analysis

Execution Time Breakdown: Figure 16 shows the execu-
tion time breakdowns of the PTC baseline and LSPA when
performing training on the VGG-16 model with the stochastic
gradient descent approach. Breakdown analysis was done with
PTC since it is the only other architecture evaluated based on
the photonic-PCM technology. 30% and 18% of the overall
execution time of the PTC baseline are utilized for off-chip
DRAM accesses and tuning of photonic-PCM cells. PTC
requires more off-chip DRAM accesses and photonic-PCM
cell tuning operations as it accommodates both the original
and the transposed weight matrices. LSPA takes a similar
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TABLE IV
TRAINING ACCURACY ALONG WITH THERMAL DRIFT EFFECTS AT 0% (I), 0.5% (II), AND 1% (III) ARE ADDED.

FP32 BFloat
16

LSPA-16 LSPA-8
I II III I II III

VGG-16 71.5 71.0 70.5 70.5 70.1 69.9 69.9 69.8
ResNet-50 76.2 75.5 75.1 75.1 75.0 74.7 74.7 74.5
GoogLeNet 69.6 69.2 68.3 68.3 68.2 68.1 68.1 67.5
GNMT 26.8 26.8 25.9 25.9 25.7 24.5 24.5 24.1
Transformer 28.2 28.2 27.7 27.7 27.5 26.3 26.3 25.6
LLaMA 7B 76.9 76.3 74.3 73.6 74.3 73.9 73.2 73.0
LLaMA 30B 70.3 69.9 67.6 66.9 67.5 66.7 67.4 66.2

amount of execution time for actual computations compared
to PTC. However, the time required for off-chip DRAM
accesses (17%) and photonic-PCM cell tuning operations (7%)
are significantly lower. This is because LSPA has a notable
fraction of weights encoded in the photonic-PCM cells and
because in LSPA photonic-PCM weights are reused in both
forward and backward passes during training.
Energy Consumption Breakdown: Figure 17 shows the en-
ergy consumption breakdowns of the PTC baseline and LSPA
architecture when performing training on the VGG-16 model
with the stochastic gradient descent approach. The Off-chip
DRAM, input vector generation (including DACs and MRRs),
and output vector generation (including photodetectors, TIAs,
and ADCs) take 38%, 35%, and 13% of the overall energy
consumption in the PTC baseline, respectively. The Off-chip
DRAM, input vector generation (including DACs and MRRs),
and output vector generation (including photodetectors, TIAs,
and ADCs) take 18%, 23%, and 10% of the overall energy
consumption in the PTC baseline, respectively. LSPA requires
less energy for off-chip DRAM and input vector generation
because the input features (forward pass) and loss gradients
(backward pass) are reused for dot product operations with
weights encoded in different columns of photonic-PCM cells
in the dot product array of LSPA.
Electric vs. Photonic The area and power overhead of the
electrical layers include memory, DACs, ADCs, TIAs, and
the torus network. As shown in Figure 17, the electrical layer
takes up the majority of energy consumption at 87.6%. The
components on active and passive photonic layers including
lasers, photodetectors, MRR modulation and PCM tuning
take up only 12.4% of energy consumption. This disparity
highlights the advantage of photonics in reducing power con-
sumption, thereby enhancing the energy efficiency and overall
performance of DNN accelerators like LSPA.

D. Computation Density and Energy Efficiency

We compare the computation density (measured by
TOPS/mm2) and energy efficiency (measured by TOPS/Watt)
of LSPA and previous electrical and photonic architectures in
Table III. Please note that we assume 5nm technology for
all electrical architectures for a fair comparison. We make
the following observations: (1) conventional electrical archi-
tectures like TPU and Pipelayer achieve relatively low com-
putation density due to the constraint on operating frequency;
(2) MRR-based photonic architecture DEAP achieves higher
computation density, albeit large optical device footprint due
to much higher operating frequency, but suffers from low

energy efficiency due to excess tuning power for tempera-
ture and process variation compensation; (3) photonic-PCM-
based architecture PTC and LSPA achieve higher computation
density and energy efficiency, wherein LSPA outperforms
PTC due to the parallelism in vertical stacked passive layers.
LSPA-8 achieves a much higher computation density and
energy efficiency by trading off with accuracy. Theoretically,
LSPA-8 would have 4× the computation density and energy
efficiency than LSPA-16, but it is only 3.87× and 3.58×
respectively because area limitations of 400mm2 restrict the
electrical components (DACs, ADCs, and TIAs) needed for
16-bit reconstruction.

E. Training Accuracy

LSPA-16 configuration is employed for performance and
energy efficiency evaluations against its digital counterpart,
TPU [56], which utilizes a customized 16-bit floating-point
data format called BFloat16. While photonic-PCM offers
significant advantages in terms of parallelism and energy effi-
ciency, its reliability under varying thermal conditions remains
a critical concern. This is due to the intrinsic behavior of
GST-based photonic-PCM which store weights through phase
transitions between crystalline and amorphous states. These
state transitions are inherently sensitive to temperature fluctu-
ations, leading to what is commonly referred to as thermal
drift. In photonic-PCM systems, thermal drift manifests as
changes in the refractive index with temperature, around 0.001
to 0.01 per degree Celsius [83]. Even minor deviations in the
refractive index can affect the optical interference patterns used
to perform MAC operations, potentially degrading computa-
tional accuracy. As deep learning accelerators must operate
in diverse and sometimes thermally unstable environments,
evaluating the impact of temperature-induced noise is essential
for assessing the robustness and practical viability of LSPA in
real-world applications.

To capture this effect, we introduce thermal drift as a source
of random noise in our simulations evaluating model training
accuracy under three scenarios: 0%, 0.05% and 1% thermal
noise. Table IV summarizes the top-1 accuracy for VGG-16,
ResNet-50, and GoogLeNet trained on the ImageNet dataset
under various numerical formats, including 32-bit floating-
point FP32, 16-bit customized floating-point BFloat16, 16-bit
fixed-point, and 8-bit fixed-point (resolution of a single pho-
tonic PCM cell). In addition we report the Bilingual Evaluation
Understudy (BLEU) scores for Transformer on the WMT17
EN-DE dataset and GNMT on the WMT16 EN-DE dataset,
as well as the accuracy of LLaMA 7B and LLaMA 30B on
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(a) (b)
Fig. 18. Runtime (a) and Energy (b) performance of LSPA-16 on Resnet-50
inference with a varying number of passive photonic layers.

the SuperGLUE benchmark. The results indicate that the 16-
bit fixed-point format incurs only minor accuracy degradation
compared to FP32 and BFloat16 with a maximum loss of
2.4% and 2.8% for LLaMA 30B respectively, even in the
presence of 1% thermal noise. However, when using the 8-
bit fixed-point format - where each weight is represented by a
single photonic-PCM cell - accuracy losses increase to 3.7%
and 4.1% for LLaMA 30B respectively. While this format
significantly reduces hardware cost, it highlights the trade-
off between resolution and rebustness in thermally sensitive
photonic computing platforms.

F. Study on Number of Passive Photonic Layers

By stacking a configurable number of passive photonic
layers, LSPA’s architecture is flexible and scalable to meet
various application needs. To study the impact of varying the
number of passive photonic layers performance, we analyze
energy and latency of performing inference of Resenet-50
on LSPA-16 with 3, 9, and 18 passive photonic layers.
Keeping in mind that fabricating and aligning 10 layers in
silicon photonics accurately is already feasible [60], [61],
[62]. Continued innovation in materials, design methodologies,
and integration techniques is expected to expand the practical
limits of passive photonic layer integration in the near future
[84], [85]. With 3 passive photonic layers, the number of LSPA
stacks increases by 1.88× compared to the number of LSPA
stacks required when using 9 passive photonic layers, for the
same 400 mm2 die area limit. Conversely, when using 18
passive photonic layers, the number of LSPA stacks decreases
by 1.69× compared to the 9-layer configuration. Increasing the
number of layers per LSPA stack enables greater parallelism
and higher compute density but also exacerbates challenges
such as thermal hotspots, thermal crosstalk, and elevated data
movement requirements. As shown in Figure 18, when using
18 passive photonic layers, the higher number of stacks results
in increased memory fetches during photonic-PCM weight
reprogramming, leading to higher latency. On the other hand,
with only 3 passive layers, both energy consumption and run-
time are higher than in the 9-layer configuration, due to limited
parallelism and the need for more frequent photonic-PCM
reprogramming. Overall, increasing the number of passive
photonic layers improves computational density but introduces
diminishing returns beyond a certain point due to thermal and
memory bottlenecks. The 9-layer configuration provides an

optimal trade-off between parallelism, energy efficiency, and
runtime performance.

VIII. CONCLUSIONS

We propose LSPA, a novel 3D accelerator architecture for
DNN training, leveraging photonic-PCM technology. LSPA is
designed to optimize DNN inference and training workloads
by enabling data multicast across two dimensions and data
accumulation across three dimensions, aligning with the inher-
ent computational patterns of DNN workloads. By harnessing
additional computational parallelism in the frequency domain
and implementing optimized pipeline scheduling, LSPA fa-
cilitates the concurrent execution of forward and backward
passes within each batch. This significantly reduces expensive
data movement overhead and minimizes the need for frequent
re-programming of photonic-PCM cells. Simulation results
demonstrate that LSPA outperforms state-of-the-art accelerator
architectures, achieving up to 92% speedup in terms of exe-
cution time and up to 90% reduction in energy consumption.
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