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Abstract—The complexity and size of recent deep neural
network (DNN) models have increased significantly in pursuit of
high inference accuracy. Chiplet-based accelerator is considered
a viable scaling approach to provide substantial computation
capability and on-chip memory for efficient process of such DNN
models. However, communication using metallic interconnects
in prior chiplet-based accelerators poses a major challenge to
system performance, energy efficiency, and scalability. Photonic
interconnects can adequately support communication across
chiplets due to features such as distance-independent latency, high
bandwidth density, and high energy efficiency. Furthermore, the
salient ease of broadcast property makes photonic interconnects
suitable for DNN inference which often incurs prevalent broadcast
communication. In this paper, we propose a scalable chiplet-based
DNN accelerator with photonic interconnects named ASCEND.
ASCEND introduces (1) a novel photonic network that supports
seamless intra- and inter- chiplet broadcast communication,
and flexible mapping of diverse convolution layers, and (2) a
tailored dataflow that exploits the ease of broadcast property and
maximizes parallelism by simultaneously processing computations
with shared input data. Simulation results using multiple DNN
models show that ASCEND achieves 71% and 67% reduction in
execution time and energy consumption, respectively, as compared
to other state-of-the-art chiplet-based DNN accelerators with
metallic or photonic interconnects.

Index Terms—Deep neural network, Photonic interconnect,
Chiplet, Accelerator, Dataflow

I. INTRODUCTION

RECENT deep neural network (DNN) models have signif-
icantly increased in complexity and size with the goal of

improving inference accuracy [1]–[8]. As a result, the underly-
ing computing systems must scale up in computation capability
and on-chip memory for efficient process of such DNN models
[4]. Chiplet-based accelerator [9]–[12] is considered a viable
scaling approach as the scaling of a monolithic chip slows down
due to concerns related to power density, yield, and fabrication
cost [11], [13]. However, communication across chiplets
using metallic interconnects in prior chiplet-based accelerators
[12] poses a major challenge to system performance, energy
efficiency, and scalability. This is because the long-distance

This work was supported in part by National Science Foundation grants
CCF-1702980, CCF-1812495, CCF-1901165, CCF-1953980, CCF-1513606,
CCF-1703013, and CCF-1901192.

Yuan Li, Ke Wang, Hao Zheng, and Ahmed Louri are with the Department
of Electrical and Computer Engineering, George Washington University, Wash-
ington, DC 20052 USA. Email: {liyuan5859, cory, haozheng, louri}@gwu.edu.

Avinash Karanth is with the School of Electrical Engineering and Computer
Science, Ohio University, Athens, OH 45701 USA. Email: karanth@ohio.edu

communication across chiplets accentuates latency and latency
discrepancy, inevitably leading to performance degradation and
difficulty in data movement orchestration. Besides, the energy
consumption of communication across chiplets is higher than
within a monolithic chip [12], [14].

Disruptive technologies such as photonic interconnects can
potentially overcome the fundamental limitations of metallic
interconnects [15]–[18]. Data can propagate through waveguide
within one hop regardless of the distance between source
and destination, maintaining low and uniform communication
latency in a chiplet-based accelerator. Communication band-
width can be increased through techniques such as wavelength-
division multiplexing (WDM) and space-division multiplexing
(SDM) [19]. Photonic interconnects have also shown advantage
in energy efficiency for long-distance communication as often
seen in chiplet-based accelerators [15], [17]. Despite the above
superior features of photonic interconnects, the salient ease of
broadcast property [15], [16] makes photonic interconnects
especially suitable for DNN inference which often incurs
prevalent broadcast communication [20]–[23].

Prior photonic networks [24]–[35] often target inter-processor
communication typically observed in CPUs or GPUs, and
support uniform bandwidth provision at relatively high cost.
Besides, the ease of broadcast property of photonic intercon-
nects is not fully exploited. Some prior photonic networks
[27], [34] only employ broadcast to facilitate cache coherence
protocol. Other photonic networks [29], [31], [33], though
constructed by single-write-multiple-read (SWMR) channels,
disable the broadcast capability. As a result, a novel photonic
network which is tailored to DNN inference and efficiently
supports broadcast communication is necessary.

Employing photonic interconnects in chiplet-based acceler-
ators also alters the primary target of dataflow optimization.
Prior dataflow optimizations for accelerators with metallic
interconnects [12], [36]–[41] often prioritize exploiting locality
over broadcast communication. For example, some dataflow
optimizations [12], [42] exploit locality of weights at the cost
of only being able to broadcast input features. By contrast, [40]
exploits locality of input features at the cost of only being able
to broadcast weights. Due to the distance-independent latency
feature and ease of broadcast property of photonic interconnects,
a tailored dataflow that enables broadcast of both types of input
data (weights and input features) is beneficial, when a photonic
network is implemented in a chiplet-based accelerator.

In this paper, we propose a chiplet-based DNN accelerator
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Fig. 1. Computations in a convolution layer.

with photonic interconnects named ASCEND. ASCEND includes
(1) a novel photonic network that facilitates massive broadcast
communication, and (2) a tailored dataflow that exploits the ease
of broadcast property to improve parallelism. The contributions
of this paper include:

A Novel Photonic Network: We construct a unit 2D pro-
cessing element (PE) array by selectively grouping local PEs
and corresponding PEs across different chiplets in columns
and rows, respectively. A waveguide facilitates the broadcast
communication from the global buffer (GLB) to this PE
array through WDM while a second waveguide reuses the
wavelengths for unicast communication from each individual
PE to the GLB. A chiplet-based accelerator is constructed
by aggregating multiple such PE arrays and connecting them
to the GLB through SDM. The resulting photonic network
supports (1) seamless one-hop intra- and inter- chiplet broadcast
communication, and (2) flexible mapping of diverse convolution
layers at the granularity of a unit 2D PE array.

A Tailored Dataflow: We introduce a broadcast-based output-
stationary dataflow that exploits the broadcast communication
capability of the proposed photonic network and facilitates
high parallelism. Specifically, this dataflow enforces intra-
chiplet broadcast of input features and inter-chiplet broadcast of
weights by spatially mapping computations with shared input
features and weights to columns and rows of PEs in the unit
2D PE arrays, respectively. Furthermore, the output-stationary
nature of this dataflow minimizes the unicast communication
of writing back intermediate data from PEs to the GLB.

Evaluation and Design Space Exploration: We compare
ASCEND with other state-of-the-art chiplet-based accelerators
with metallic or photonic interconnects using multiple DNN
models. Simulation results show that ASCEND achieves up
to 71% and 67% reduction in execution time and energy
consumption, respectively. We further perform design space
exploration by varying multiple factors such as the size of the
unit 2D PE array and the capacity of the GLB.

Algorithm 1: Nested loop representation

1 for c ← [0:C) do
2 for k ← [0:K) do
3 for h ← [0:H) do
4 for w ← [0:W) do
5 for r ← [0:R) do
6 for s ← [0:S) do
7 O[k,h-r+1,w-s+1]+=I[h,w,c]×W[k,r,s,c]

h/w

k

r/s 1

2

3

4

I[0,0,*]×W[0,0,0,*]  I[0,1,*]×W[0,0,0,*]  …  I[H,W,*]×W[0,0,0,*]  

I[0,0,*]×W[1,0,0,*]  I[0,1,*]×W[1,0,0,*]  …  I[H,W,*]×W[1,0,0,*]  

I[0,0,*]×W[2,0,0,*]  I[0,1,*]×W[2,0,0,*]  …  I[H,W,*]×W[2,0,0,*]  

I[0,0,*]×W[K,0,0,*]  I[0,1,*]×W[K,0,0,*]  …  I[H,W,c]×W[K,0,0,*]  

I[0,0,*]×W[K,0,1,*]  I[0,1,*]×W[K,0,1,*]  …  I[H,W,c]×W[K,0,1,*]  

I[0,0,*]×W[K,R,S,*]  I[0,1,*]×W[K,R,S,*]  …  I[H,W,c]×W[K,R,S,*]  

… … …

Fig. 2. Multiplications with shared weights or input features.

II. BACKGROUND AND MOTIVATION

A. Communications in DNN

The computations involved in a typical convolution layer can
be presented as a 6-dimension nested loop over weight kernels,
input feature maps (ifmaps), and output feature maps (ofmaps),
assuming the batch size of ifmaps to be 1. As illustrated in
Fig. 1 and Algorithm 1, the dimensions include the number
of weight kernels (k), the number of input channels (c), the
height (r) and width (s) of weight kernels, and the height
(h) and width (w) of ifmaps. The height (e) and width (f)
of ofmaps are not independent and can be derived from the
above 6 dimensions. In the single-batch case, e=h-r+1 and
f=w-s+1 (assume stride of 1). As shown in Algorithm 1, there
are two types of read-only input data: weights W[k,r,s,c]
and input features I[h,w,c]. Meanwhile, the read-and-
write intermediate computation results, known as partial sums
(psums), are accumulated to obtain the final output features
O[k,h-r+1,w-s+1].

Unlike the dynamic communication patterns often observed
in generic applications in CPUs and GPUs, the communication
patterns incurred in DNN inference are predetermined by
factors such as the dimension values (C, K, H, W, R, S) in
the nested loop, the parameters of the underlying comput-
ing hardware, and the utilized dataflow. Since each psum
I[h,w,c]×W[k,r,s,c]is unique and only involved in
accumulation once, we focus on identifying the broadcast
communication incurred during the separate transmission
of two input data types: weights W[k,r,s,c] and input
features I[h,w,c]. Fig. 2 lists multiplications involved in a
convolution layer along k, h/w, and r/s dimensions. Please
note that the c dimension is not shown in Fig. 2, as there
is no data sharing and broadcast communication along this
dimension. We utilize a symbol ”∗” to represent the value in
c dimension. We observe that multiplications along the k and
r/s dimensions share the same input feature I[h,w,c],
while multiplications along the h/w dimension share the
same weight W[k,r,s,c], indicating the possible broadcast
communication for both types of input data. However, prior
dataflow optimizations [12], [40], [42] are not developed
to fully exploit the broadcast communication. For example,
[42] and [12] spatially distribute multiplications along the
r/s and k dimensions ( 1 and 2 in Fig. 2), respectively,
to exploit the locality of weights at the cost of only being
able to broadcast input features. By contrast, [40] spatially
distributes multiplications along the h/w dimension ( 3 in
Fig. 2) to exploit the locality of output features at the cost
of only being able to broadcast weights. Given that the
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transmission of both weights and input features can incur
broadcast communication, a tailored dataflow that spatially
distributes multiplications along the k and h/w dimensions
( 4 in Fig. 2) and enables simultaneous broadcast of weights
and input features is beneficial when photonic interconnects are
employed. Fully-connected layers can also be mathematically
framed using the nested loop representation in Algorithm 1, by
restricting H=R and W=S. DNN models also include other layer
types such as pooling and normalization. Our work focuses on
the convolution and fully-connected layers as they dominate
the computation and memory communication [43], [44].

B. Photonic Interconnects

We present a photonic link that connects two sets of
transmitter and receiver by multiplexing two wavelengths in Fig.
3. The light of wavelengths λ0 and λ1 is generated by an off-
chip laser source and coupled into a waveguide using an optical
coupler [45]. Two micro-ring resonators (MRRs) [46], MRR0
and MRR1, work as modulators to modulate the incoming
electrical signals on wavelengths λ0 and λ1, respectively.
Another two MRRs, MRR2 and MRR3, work as filters to select
modulated wavelengths and forward them to the corresponding
photodetectors [16]. Each set of modulator and filter MRRs
can only work on a specific wavelength (e.g., MRR0 and MRR2
work only on wavelength λ0). The electrical signals generated
from photodetectors are then amplified through transimpedance
amplifiers (TIAs) and forwarded to comparators to retrieve the
initial data being transmitted. All MRRs that function as either
modulators or filters, are tuned by separate resistive heaters
with specific thermal tuning modules to mitigate thermal and
process variations [16], [29]. The example in Fig. 3 only shows
the multiplexing of two wavelengths, prior work has shown as
many as 64 wavelengths multiplexed in a waveguide with each
wavelength operating at 10 Gbps data rate [25], [47]–[49].
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Fig. 5. Architecture and wavelength allocation of a 4×4 unit 2D PE Array.

In addition to the common components shown in Fig. 3,
ASCEND includes a special component named tunable splitter
[50] to facilitate broadcast communication. Different from
modulators and filters that work at either on- or off- resonance,
a tunable splitter works at a transient state between the on-
and off- resonance. As shown in Fig. 4, the regions outside
and inside a tunable splitter ring are with n-type and p-type
dope, respectively, to form a PIN diode structure. When no
bias voltage is applied to the PIN diode as shown in Fig. 4
(a), the tunable splitter is at off-resonance and light from the
input port is directly forwarded to the through port. When
applying a proper bias voltage to the PIN diode as shown in
Fig. 4 (b), the tunable splitter works at the transient state to
guide α fraction of light to the drop port while forwarding the
remaining (1-α) fraction of light to the through port. The
split ratio is defined as α/(1-α). [50] reports that different
split ratios in the range of [0.4,1.8] can be obtained by
tuning the bias voltage in the range of [0,5V]. The applied
bias voltage is tuned by a digital-to-analog converter (DAC).
In the case that a split ratio beyond the range of [0.4,1.8]
is needed, multiple tunable splitters must be cascaded [51].

Many prior photonic networks [14], [24], [25], [30], [31],
[33] for chiplet-based architectures are developed for inter-
processor communication typically observed in CPUs and
GPUs. The resulting uniform bandwidth provision approach
leads to excessive energy and area overhead. For example, the
number of MRRs in photonic crossbars in [30], [31], [33] scales
quadratically with the number of chiplets. Furthermore, though
constructed by SWMR channels which are naturally suitable
for broadcast communication, the broadcast capability of the
above photonic crossbars are disabled due to power and other
concerns. Unlike prior photonic networks for chiplet-based
architectures, ASCEND photonic network is tailored for DNN
inference and facilitates massive broadcast communication and
high parallelism.

III. ASCEND ARCHITECTURE

A. Unit 2D Processing Element Array

Recall Fig. 2 where we spatially distribute multiplications
along both k and h/w dimensions to achieve simultaneous
broadcast of input features and weights, respectively. As a
result, PEs in a chiplet-based accelerator are grouped into a
unit 2D array to accommodate the above multiplications. The
purpose of constructing a unit 2D PE array is to (1) explore
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the optimal organization of PEs with high energy-efficiency,
and (2) construct large-scale chiplet-based accelerators in a
scalable manner by aggregating one or multiple unit 2D PE
arrays.

1) Unit 2D PE Array Architecture: Fig. 5 illustrates the
architecture and wavelength allocation of a 4×4 unit 2D
PE array. The architectural details of PE00 in Fig. 5 are
presented in Fig. 6. Each PE includes a multiply-accumulate
(MAC) unit and register buffers to store weights, input features
and intermediate psums. There are one transmitter for PE-to-
GLB unicast communication and two receivers for GLB-to-
PE broadcast communication. Please note that one receiver
is connected to a tunable splitter for per-column broadcast
communication as the wavelength (λ4 in Fig. 6) is shared by
all PEs in the same column and only a fraction of light is
guided to the photodetector. By contrast, the other receiver is
connected to a filter for per-row broadcast communication as
the wavelength (λ0 in Fig. 6) is dedicated for communication
to a PE (PE00 in Fig. 6). Since PEs in a column utilize
the same wavelength for PE-to-GLB unicast communication,
a token-based approach is implemented for arbitration. As
shown in Fig. 5 and Fig. 6, a token is propagated among
PEs in a column through a token propagation ring. Interfaces
attached to different columns are very similar as shown in
Fig. 7. A set of tunable splitters are responsible for guiding
an appropriate fraction of light of wavelengths (λ0, λ1, λ2,
λ3 in Fig. 7) to the corresponding column while forwarding
the remaining fraction of light to downstream columns. The
split ratio shared by a set of tunable splitters is determined
according to the position of the corresponding column. For
example, the split ratio values for the interfaces associated

with Column0 and Column1 are 1/3 and 1/2, as there
are three and two downstream columns, respectively. Within
each interface, there are also two MRRs that keep working
at on-resonance state to filter and merge the wavelength (λ4
for Column0) for per-column broadcast communication and
PE-to-GLB unicast communication.

2) Wavelength Allocation: Four wavelengths λ0, λ1, λ2,
λ3 are utilized to broadcast weights from the GLB to each row
of PEs. For example, wavelength λ0 is utilized to broadcast
weights from the GLB to PE00, PE10, PE20, and PE30 in the
first row of the unit 2D PE array. Additional four wavelengths
λ4, λ5, λ6, λ7 are utilized to broadcast input features from
the GLB to each column of PEs. For example, wavelength
λ4 is utilized to broadcast input features from the GLB to
PE00, PE01, PE02, and PE03. The wavelengths for per-
column broadcast communication are also reused for PE-to-
GLB unicast communication (e.g., wavelength λ4 is reused
for unicast communication from PEs in the first column to the
GLB). Please note that multiple independent waveguides can be
implemented using SDM to increase the bandwidth provision
for PE-to-GLB communication. All eight wavelengths involved
in Fig. 4, λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, are multiplexed
in a waveguide using WDM.

3) Network Power Consumption of Unit 2D PE Array:
The network power consumption of a unit 2D PE array is
directly affected by its size (number of PEs involved) and
shape (ratio of array height and width). As array size increases,
the overall power consumption of modulators and associated
heaters decreases as each transmitter can broadcast to an
increasing volume of receivers. However, the laser power
consumption increases drastically due to insertion loss increase
when more PEs are attached to each broadcast channel. We
explore the impact of array size on network power consumption
and observe that optimal power consumption is obtained at
16×16 array size. For simplicity, we continue using the 4×4
unit 2D PE array to explain the proposed ASCEND architecture.
Similarly, the network power consumption of a unit 2D PE
array is also affected by the shape of the array, given a fixed
number of PEs involved. Non-square array shapes (e.g., 2×8
and 8×2) inevitably lead to insertion loss imbalance between
per-column and per-row broadcast channels. As we assume
that each wavelength is generated with similar power from
the off-chip laser source, a fraction of power of wavelengths
utilized in broadcast channels with low insertion loss will be
wasted.

B. ASCEND Network

1) Network Overview: Fig. 8 presents an ASCEND archi-
tecture with eight accelerator chiplets and eight PEs per
accelerator chiplet. This chiplet-based accelerator is constructed
by aggregating four 4×4 unit 2D PE arrays. Given the per-
column broadcast communication support of a unit 2D PE array
discussed before, we allocate a column of PEs in a unit 2D PE
array to a single accelerator chiplet (e.g., PE0, PE1, PE2, and
PE3 in Chiplet0 are from the same column of a unit 2D
PE array). Therefore, the per-column broadcast communication
in a unit 2D PE array is equivalent to intra-chiplet broadcast
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communication in the constructed chiplet-based accelerator.
Similarly, we allocate a row of PEs in a unit 2D PE array to
the same position of different accelerator chiplets (e.g., PE0
in Chiplet0, PE0 in Chiplet1, PE0 in Chiplet2, and
PE0 in Chiplet3 are from the same row of a unit 2D PE
array), making the per-row broadcast communication equivalent
to inter-chiplet broadcast communication. In Fig. 8, each row
of sixteen PEs across four accelerator chiplets belong to a
unit 2D PE array. PEs within the same accelerator chiplet
but in different unit 2D PE arrays are separately connected
by waveguides presented by solid and dashed lines. The four
involved unit 2D PE arrays in Fig. 8 are connected to the GLB
die with four separate waveguides using SDM. For example,
the unit 2D PE array including PE0, PE1, PE2, and PE3
in Chiplet0 to Chiplet3 is connected to the GLB with
Waveguide0. We observe wavelength reuse between unit 2D
PE arrays as separate waveguides are utilized. In the ASCEND
architecture shown in Fig. 8, wavelengths λ0, λ1, λ2, and
λ3 are reused for inter-chiplet broadcast communication while
wavelengths λ4, λ5, λ6, and λ7 are reused for intra-chiplet
broadcast communication. Waveguide4 is used to deliver
light to each PE for PE-to-GLB unicast communication.

2) Inter-chiplet Broadcast Communication: The inter-chiplet
broadcast function in ASCEND broadcasts the same weight
to PEs in the same position of different accelerator chiplets.
The broadcast communication from the GLB to PE0 in all
eight accelerator chiplets is done by modulating wavelength
λ0 on both Waveguide0 and Waveguide3. Similarly,
the broadcast communication from the GLB to PE1 in all
accelerator chiplets is done by modulating wavelength λ1 on
both Waveguide0 and Waveguide3, while the broadcast
communication from the GLB to PE4 in all accelerator chiplets
is done by modulating wavelength λ0 on both Waveguide1
and Waveguide2. During inter-chiplet broadcast communi-

Algorithm 2: ASCEND dataflow

1 // Package level

2 for e1 ← [0:E1) do
3 for f1 ← [0:F1) do
4 parallel for e2 ← [0:E2) do
5 parallel for f2 ← [0:F2) do
6 parallel for k1 ← [0:K1) do
7 // Chiplet level

8 for k2 ← [0:K2) do
9 parallel for k3 ← [0:K3) do

10 parallel for e3 ← [0:E3) do
11 parallel for f3 ← [0:F3) do
12 // PE level

13 for c ← [0:C) do
14 for r ← [0:R) do
15 for s ← [0:S) do
16 k=k3+K3×(k2+K2×k1)
17 e=e3+E3×(e2+E2×e1)
18 f=f3+F3×(f2+F2×f1)
19 O[k,e,f]+=I[r+e-1,s+f-1,c]×W[k,r,s,c]

cation, the tunable splitters in the interfaces along a waveguide
are tuned to appropriate split ratios to guide a fraction of
laser power in λ0 to λ3 to the local accelerator chiplet while
forwarding the remaining fraction of laser power to downstream
accelerator chiplets. For example, the tunable splitters in the
interfaces attached to Chiplet0 are all tuned to have a
split ratio of 1/3 because there are in total 3 downstream
chiplets along either Waveguide0 or Waveguide1. The
laser power at the drop port of a tunable splitter is collected
and forwarded to the PE with a filter working on the same
wavelength, which means this particular PE is a destination of
inter-chiplet broadcast communication.
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Fig. 9. Processing a convolution layer [r,s,e,f,c,k]=[2,2,4,4,3,8] on the ASCEND architecture as shown in Fig. 8 that supports intra- and inter-
chiplet broadcast communication. ASCEND dataflow processes output features on the same e/f dimension on different accelerator chiplets while processing
output features with different k dimension values on different PEs in the same accelerator chiplet.

3) Intra-chiplet Broadcast Communication: The intra-chiplet
broadcast function in ASCEND broadcasts the same input
feature to PEs in the same accelerator chiplet. The broadcast
communication from the GLB to all PEs in Chiplet0 is
done by modulating wavelength λ4 on both Waveguide0
and Waveguide1. Similarly, the broadcast communication
from the GLB to all PEs in Chiplet1 is done by modulating
wavelength λ5 on both Waveguide0 and Waveguide1,
while the broadcast communication from the GLB to all
PEs in Chiplet4 is done by modulating wavelength λ4 on
both Waveguide2 and Waveguide3. During intra-chiplet
broadcast communication, the MRR filters in the interfaces
along a waveguide work at on-resonance state and completely
guide wavelengths for intra-chiplet broadcast communication
to the drop port. The laser power is then collected and
propagated through local PEs. The tunable splitter attached to
the receiver of a specific PE is utilized to guide an appropriate
fraction of laser power to the corresponding photodetector
while forwarding the remaining fraction of laser power to
downstream PEs. For example, the tunable splitter attached to
PE0 of Chiplet0 is tuned to a split ratio of 1/3 as there
are three downstream PEs (PE1, PE2, and PE3).

4) PE-to-GLB Unicast Communication: The intra- and
inter- chiplet broadcast functions in ASCEND only address
the transmission of input data: weights and input features. The
intermediate psums and final output features are transmitted to
the GLB through PE-to-GLB unicast function. This function
reuses the wavelengths originally allocated for intra-chiplet
broadcast communication. For example, wavelength λ4 is allo-
cated for both intra-chiplet broadcast communication and PE-to-
GLB unicast communication in Chiplet0. The wavelength
conflict of these two functions is resolved by implementing
separate waveguides. As local PEs share the same wavelength
for PE-to-GLB unicast communication, a token-based approach
is employed. PE that possesses the single-bit token can transmit

its intermediate psums or output features back to the GLB. Once
the transmission is complete, the single-bit token is released
and propagated to the next local PE through an electrical token
propagation ring. The token is originally possessed by the first
local PE after reset (active low reset signal in Fig. 6). Because of
the uniform computation operations across all PEs, a single-bit
electrical token propagation ring is sufficient compared to more
sophisticated token arbitration waveguide approach [34]. The
bandwidth for PE-to-GLB unicast communication is smaller
than the bandwidth for GLB-to-PE broadcast communication.
This bottleneck is alleviated by adopting an output-stationary-
based dataflow as discussed in the following section. The
bandwidth for PE-to-GLB unicast communication can also be
expanded by implementing multiple waveguides using SDM.

C. ASCEND Dataflow

ASCEND dataflow, as shown in Algorithm 2 and Fig. 9,
is optimized based on three unique features of the proposed
photonic network. First, ASCEND supports intra- and inter-
chiplet broadcast communication by leveraging the ease of
broadcast property of photonic interconnects. Second, by using
an output-stationary dataflow, we minimize data exchange
between PEs. Third, output-stationary dataflow prioritizes
reducing psum movement, which significantly reduces the
bandwidth demand for PE-to-GLB unicast communication.
Moreover, by multiplexing different wavelengths, we can
increase the number of psums sent simultaneously back to
GLB from different chiplets.

Consider the convolution layer shown in Fig. 9 (a) as an
example. We represent different weight kernels (output channel
k dimension) with different colors, and label a weight in a
specific kernel using X:Y terminology where X and Y represent
the input channel in the c dimension and the position of this
weight, respectively. Input features are represented using the
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TABLE I
NETWORK PARAMETERS

Simba
Chiplet level Electrical mesh

20 Gbps / PE read / write bandwidth

Package level Electrical mesh
320 Gbps / chiplet read / write bandwidth

POPSTAR

Chiplet level Electrical mesh
20 Gbps / PE read / write bandwidth

Package level

Photonic crossbar
310 Gbps / chiplet read bandwidth

100 Gbps / chiplet write bandwidth
10 wavelengths, 10 Gbps / wavelength

ASCEND

Chiplet level 20 Gbps / PE read bandwidth
10 Gbps / PE write bandwidth (shared)

Package level
340 Gbps / chiplet read bandwidth
20 Gbps / chiplet write bandwidth

32 wavelengths, 10 Gbps / wavelength

same terminology as for weights. For output features, X in
the X:Y terminology represents the output channel in the k
dimension. Fig. 9 (b) describes how the example convolution
layer is mapped to the ASCEND architecture shown in Fig.
8 to fully exploit the broadcast capability of the ASCEND
photonic network. We map two rows of output features in
an ofmap to different chiplets(E2=2, F2=3 in the dataflow
shown in Algorithm 2) while filling the rest PEs in each chiplet
with corresponding output features in other ofmaps (K3=8 in
the dataflow shown in Algorithm 2). As we allocate output
features at the same ofmap to different accelerator chiplets,
the inter-chiplet broadcast capability of ASCEND photonic
network can be leveraged to transmit weights from the GLB to
PEs. Meanwhile, as we allocate output features from different
ofmaps to PEs within a chiplet, the intra-chiplet broadcast
capability of ASCEND photonic network can be leveraged to
transmit input features. By doing so, both types of input data
are transmitted to PEs through broadcast communication.

Fig. 9 (c) describes the detailed computation and commu-
nication operations involved in one iteration of the c loop in
Algorithm 2. Since R=S=2, the operations are done in four
steps. We focus on computation and communication operations
related to two PEs responsible for operations related to output
features 1.A and 1.F. Operations related to other PEs can
be easily inferred. In Step1, weight labeled 1.1 and in
green color is transmitted to 1.A and 1.F using inter-chiplet
broadcast wavelength λ0. Meanwhile, input features labeled
1.a and 1.g are transmitted to 1.A and 1.F using intra-
chiplet broadcast wavelengths λ4 and λ5, respectively. 1.A
and 1.F perform MAC operations when corresponding weights
and input features are delivered, and generate 1.1×1.a and
1.1×1.g, respectively. There are similar operations in the
following steps. The psums generated at Step4 are stored
in the local accumulation buffers for the next iteration of the
c loop (Line13 in Algorithm 2). Once the entire c loop is
completed, the final output features are obtained and transmitted
to the GLB.

D. Flexible Mapping of Convolution Layers

Consider a layer [r,s,e,f,c,k]=[2,2,2,2,3,16],
the number of output features on an ofmap is e×f=2×2=4
while the number of output channels is k=16. When mapping
this convolution layer to the ASCEND architecture shown in Fig.
8, we observe that only four accelerator chiplets are utilized.
Meanwhile, the computations along k dimension have to be
iteratively performed while there are idle accelerator chiplets
in the system. To resolve this issue, we virtually construct a
16×4 PE array instead of a 8×8 PE array in the k and e/f
dimensions by simultaneously broadcasting the same input
feature in Waveguide0 to Waveguide3 in Fig. 8. This
approach exploits Line6 of the ASCEND dataflow shown in
Algorithm 2.

Consider another convolution layer with parameters
[r,s,e,f,c,k]=[2,2,4,4,3,4], the number of output
features on an ofmap is e×f=4×4=16 while the number of
output channels k=4. This represents an opposite situation
as compared to the above example. When mapping this
convolution layer to the ASCEND architecture shown in Fig.
8, we observe that only 4 PEs in each accelerator chiplet are
utilized. Meanwhile, the computations along e/f dimension
have to be iteratively performed while there are idle PEs in
all accelerator chiplets in the system. To resolve this issue,
we virtually construct a 4×16 PE array in the k and e/f
dimensions by simultaneously broadcasting the same weight
in Waveguide0 to Waveguide3 in Fig. 8. This approach
exploits Line10 and Line11 of the ASCEND dataflow shown
in Algorithm 2.

IV. EVALUATION METHODOLOGY

A. Simulation Platform

In order to evaluate ASCEND and other chiplet-based DNN
accelerators [12], [33], we extend the open-source MAESTRO
simulator [52] to support the non-uniform distribution of latency
and bandwidth between PEs. The execution time includes
both computation time and communication time. The extended
simulator tracks the number of arithmetic operations and the
number of accesses to each in-package memory hierarchy (e.g.
GLB, local register buffer, etc.) to calculate the computation
time and in-package communication time, respectively. The
calculation takes the hierarchical network architecture into
account and ensures that communication does not exceed the
bandwidth limit of the corresponding link. The delay for tuning
the optical tunable splitters is set to 500 ps [50]. The off-
package communication time is obtained from the DRAMSim2
simulator [53]. We assume that the communication time is
maximally overlapped by the computation time.

B. Power Model

We evaluate the power consumption of computations using
Synopsys Design Compiler. The power consumption values
of accessing in-package memory hierarchies and off-package
DRAM are obtained using CACTI 6.0 [62] and DRAMSim2,
respectively. The power consumption of the in-package metallic-
based interconnects is obtained using DSENT [55], while the
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TABLE II
STANDARD PHOTONIC PARAMETERS

Component Value Component Value

Laser source 5 dB [47] Ring drop 1 dB [54]
Coupler 1 dB [47] Ring through 0.02 dB [55]
Splitter 0.2 dB [49] Photodetector 0.1 dB [47]
Waveguide 1 dB/cm [47] Waveguide-to-receiver 0.5 dB [56]
Waveguide bend 1 dB [56] Receiver sensitivity -20 dBm [47]
Waveguide crossover 0.05 dB [56] Ring heating 2 mW [57]

TABLE III
AGGRESSIVE PHOTONIC PARAMETERS

Component Value Component Value

Laser source 5 dB [47] Ring drop 0.7 dB [55]
Coupler 1 dB [47] Ring through 0.01 dB [58]
Splitter 0.2 dB [49] Photodetector 0.1 dB [47]
Waveguide 1 dB/cm [47] Waveguide-to-receiver 0.5 dB [56]
Waveguide bend 0.01 dB [59] Receiver sensitivity -26 dBm [60]
Waveguide crossover 0.05 dB [56] Ring heating 320 µW [61]

power consumption of photonic interconnects is derived from
Equation (1):

Ptotal = Plaser + PTX + PRX + Pthermal (1)

The overall power consumption Ptotal includes three
parts: laser power Plaser, power consumption of transmitting
circuitry PTX, and power consumption of receiving circuitry
PRX. We calculate PTX and PRX using the same parameters as
in [61], [63]. Please note that the power consumption for ring
heating is not included in both PTX and PRX. The values for
PTX and PRX are 0.9 mW and 0.6 mW, respectively.

The laser power Plaser includes four parts: photodetector
sensitivity Prs, insertion loss Closs, extinction ratio power
penalty Pextinction, and system margin Msystem, as shown in
Equation (2):

Plaser = Prs + Closs + Pextinction +Msystem (2)

Table II and Table III list standard and aggressive photonic
parameters, respectively, from which the photodetector sensitiv-
ity Prs and insertion loss Closs can be obtained or derived. We
adopt the standard photonic parameters in Table II for energy
consumption estimation, unless otherwise stated. Pextinction
represents the power penalty caused by extinction ratio which is
assumed to be 2 dB [64]. System margin Msystem is assumed to
be 4 dB [65]. The purpose of the system margin is to allocate a
certain amount of power to additional sources of power penalty
that may develop during the system lifetime.

C. Chiplet-based DNN Accelerators for Comparison

ASCEND is compared with Simba [12] and POPSTAR [33].
Simba is the state-of-the-art chiplet-based DNN accelerator
with only metallic interconnects. To the best of our knowledge,
there are no chiplet-based DNN accelerators with photonic
interconnects. Hence, we select a chiplet-based architecture
POPSTAR originally designed for general applications, and
replace the general CPU chiplets with accelerator chiplets
in Simba to create another baseline for fair comparison. We

assume the system includes 32 chiplets and 32 PEs per chiplet
for ASCEND. PE clock frequency is set to 1 GHz similar to [12].
ASCEND adopts 16×16 unit 2D PE array unless otherwise
stated. To maintain the same computation capability, the MAC
vector width of each PE is 32 in ASCEND. The local buffer size
of a PE in ASCEND is 4 kB (128 B per unit MAC vector width)
while the local buffer size of a PE in Simba and POPSTAR is 43
kB [12]. The GLB size in ASCEND is 2 MB (64 B per unit MAC
vector width), which is the same as in Simba and POPSTAR [12].
The network parameters of ASCEND and two other baselines
are listed in Table I. We attempt to keep the bandwidth values
at both chiplet and package levels comparable across ASCEND
and two baselines. For example, we keep the bandwidth values
at chiplet level the same in ASCEND and two baselines by
adjusting the clock frequency of the electrical mesh networks
in Simba and POPSTAR. However, some bandwidth values
cannot be tuned to be exactly the same due to specific features
of different network architectures.

D. Benchmarks

We choose four DNN models, VGG-16 [5], ResNet-50 [1],
DenseNet-201 [2], and EfficientNet-B7 [8] as the evaluation
benchmarks. ResNet-50 includes more variations of weight
kernel size and computation intensity, while VGG-16 includes
more communication-intensive fully-connected layers that can
test network performance in extreme scenarios. There are
21 and 12 different convolution or fully-connected layers in
ResNet-50 and VGG-16, respectively. We will test all 33 layers
in a layer-by-layer manner, as each layer exhibits different
parameters which have implications on performance and energy
consumption of our design and the other two baselines. Please
note that we have removed redundant layers with the same
configuration parameters. For example, res2a_branch1 in
ResNet-50 has been removed because it has the same configura-
tion parameters as res2[a-c]_branch2c. Additionally, we
accumulate the execution time and energy consumption values
of all layers to obtain an implication of the overall execution
time and energy consumption in a complete inference pass.
Please note that only the convolution and fully-connected layers
are taken into account during the accumulation process.

V. EXPERIMENT RESULTS

A. Execution Time and Energy Consumption

Fig. 10 shows the execution time comparison of ASCEND,
Simba and POPSTAR in 33 different ResNet-50 and VGG-
16 layers. The execution time values are normalized to the
execution time of Simba. As compared to Simba, ASCEND
achieves execution time reduction in the range of 21% (L1:
conv1) to 75% (L21: fc-1000). The difference in reduction
of execution time comes from (1) the average number of hops
of inter-chiplet communication in Simba, (2) the ofmap e/f
dimension and output channel k dimension that determine the
utilization rate of PEs in ASCEND, and (3) the input feature
reuse distance that largely determines the intra-chiplet broadcast
efficiency in ASCEND. As compared to POPSTAR, ASCEND
achieves execution time reduction in the range of 7% (L8:
res3[a-d]_branch2b) to 55% (L6: res3a_branch1).
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This indicates the effectiveness of the architecture and dataflow
co-design. ASCEND performs better than POPSTAR because (1)
ASCEND exploits the ease of broadcast feature better than POP-
STAR through package-level data partition, and (2) ASCEND
allocates higher bandwidth for communication between the
GLB and accelerator chiplets. On average, ASCEND performs
52% and 29% faster than Simba and POPSTAR, respectively.

Fig. 11 shows the energy consumption comparison of
ASCEND, Simba and POPSTAR in 33 different ResNet-50 and
VGG-16 layers using standard photonic parameters listed in
Table II. The energy consumption values are normalized to
the energy consumption of Simba. As compared to Simba,
ASCEND achieves energy consumption saving in the range of
25% (L1: conv1) to 72% (L20: res5[b-c]_branch2a).
This mainly comes from the low energy consumption of inter-
chiplet communication in ASCEND. As compared to POPSTAR,
ASCEND achieves energy consumption saving in the range of
7% (L1: conv1) to 56% (L33: fc-1000). The energy savings
observed in different layers are similar because ASCEND
photonic inter-chiplet network requires fewer MRRs than the
photonic crossbar in POPSTAR. On average, we observe that
ASCEND achieves 57% and 46% energy saving as compared
to Simba and POPSTAR, respectively.

In addition to the layer-by-layer estimation, we compare
the execution time of a complete inference in four different
DNN models in Simba, POPSTAR and ASCEND. The results
are shown in Fig. 12 (a). We observe that ASCEND achieves
execution time reduction in the range of 47% (DenseNet)
and 71% (ResNet-50) as compared to Simba. We adopt both
standard photonic parameters listed in Table II and aggressive
photonic parameters listed in Table III for energy consumption
estimation of POPSTAR and ASCEND and present the results in
Fig. 12 (b). When using the standard photonic parameters,
ASCEND achieves energy reduction in the range of 37%
(DenseNet) and 67% (ResNet-50) as compared to Simba. When
more aggressive photonic parameters are utilized, more energy
reduction in the range of 47% (DenseNet) and 74% (ResNet-50)
is achieved by ASCEND as compared to Simba.
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Fig. 13. (a) Execution time and (b) energy consumption breakdown of one
complete ResNet-50 inference when comparing ASCEND with Simba and
POPSTAR. (c) Network energy consumption breakdown of ASCEND in one
complete ResNet-50 inference.

B. Analysis on a ResNet-50 Inference Pass

We present the detailed analysis of execution time and
energy consumption (using standard photonic parameters listed
in Table II) of a complete ResNet-50 inference. Please note
that the values only include the convolution layers and fully-
connected layers. We make several observations from the
execution time diagram in Fig. 13 (a). First, the numbers of
cycles for computation are the same in Simba and POPSTAR,
as these two baselines have the same chiplet architecture and
dataflow. Second, the numbers of cycles for communication in
Simba and POPSTAR are higher than the number of cycles for
computation, taking 73% and 66% of overall execution time.
Third, the number of cycles for communication in ASCEND is
very small due to direct connection between the GLB and each
PE, and fully leveraging the broadcast capability of photonic
interconnects. Fig. 13 (b) illustrates the energy consumption
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Fig. 14. (a) Execution time and (b) energy consumption comparison when
applying weight-stationary [12], output-stationary [40], and ASCEND dataflows
to the ASCEND architecture. All values are normalized to weight-stationary
dataflow.

breakdown of Simba, POPSTAR and ASCEND when processing
a complete ResNet-50 inference. The energy reduction as
compared to Simba and POPSTAR mainly comes from (1)
lower energy consumption of communication network and (2)
fewer accesses to the memory hierarchy. When breaking down
the network energy consumption of ASCEND as shown in
Fig. 13 (c), we observe that the energy consumption values for
thermal heating, laser, transmitters and receivers are 1.3 mJ, 1.3
mJ, 0.5 mJ, and 5.5 mJ, respectively. The significant difference
of energy consumption values of PTX and PRX illustrates that
our design successfully leverages the broadcast capability of
photonic interconnects. The ASCEND throughput and energy
consumption are 5649 frames per second and 21.7 mJ when
running ResNet-50 model and assuming batch size of one.

C. Impact of ASCEND Dataflow

Fig. 14 (a) shows the execution time comparison of weight-
stationary dataflow in [12], output-stationary dataflow in [40]
with partition along k dimension at the package level, and
ASCEND dataflow. All three dataflows are implemented on
the ASCEND architecture for fair comparison. The weight-
stationary dataflow does not fully exploit the two-level broad-
cast capability of ASCEND photonic network. Partitions along
k dimension at package level and along c dimension at chiplet
level prevent full utilization of inter-chiplet weight broadcast
and intra-chiplet input feature broadcast, respectively. Further,
the weight-stationary dataflow incurs inter-PE communication
which yields high latency overhead in ASCEND photonic
network. The average execution time reduction of ASCEND
dataflow over weight-stationary dataflow is 65%. The output-
stationary dataflow [40] is originally designed for single-
chip DNN accelerators. We extend it by partitioning along k
dimension at the package level. The output-stationary dataflow
[40] maps output features to PEs one ofmap at a time. Due to
mismatch between ofmap size and system scale, full broadcast
capability of ASCEND photonic network can not be often
achieved. The average execution time reduction of ASCEND
dataflow over the output-stationary dataflow is 23%.

Fig. 14 (b) shows the energy consumption comparison of all
three dataflows implemented on the ASCEND architecture using
the standard photonic parameters listed in Table II. The average
energy saving of ASCEND dataflow over the weight-stationary
dataflow [12] is 84%. The excessive energy consumed by the
weight-stationary dataflow mainly comes from (1) excessive

GLB access due to prevalent inter-PE communication, and
(2) high fraction of unicast communication that leads to high
modulation energy. The average energy saving of ASCEND
dataflow over the output-stationary dataflow [40] is 39%.

D. Area Estimation

We estimate the area of ASCEND PE (excluding the trans-
mitter and receivers) using Synopsys Design Compiler
and a 28 nm technology library. The area of PE excluding the
transmitter and receivers is 0.72 mm2. We assume that the area
for a transmitter or a receiver is 0.0096 mm2 per wavelength
[66]. Hence, the area overhead of the peripheral circuity (E/O
and O/E) of an ASCEND PE is about 3.9%. The area of an
accelerator chiplet in ASCEND is 24.07 mm2. When assuming
5 µm MRR radius [67], the overall area of MRRs is 0.01 mm2.
When further assuming 4 electrical wires (for data transmission
and thermal tuning) per MRR and 36 µm micro-bump pitch
size [68], the overall area of micro-bumps is 0.68 mm2. As
most MRRs and micro-bumps can be implemented underneath
the accelerator chiplet, we assume that they do not incur extra
area overhead.

VI. CONCLUSIONS
In this paper, we propose a chiplet-based DNN accelerator

with photonic interconnects named ASCEND. The salient
features of ASCEND include (1) a novel photonic network
that supports seamless intra- and inter- chiplet broadcast
communication and flexible mapping of diverse convolution
layers, and (2) a tailored dataflow that exploits the ease of
broadcast property of photonic interconnects to maximize
parallelism in DNN inference. The combined benefits of the
above two features provide high-performance and energy-
efficient communication support for scalable chiplet-based
DNN accelerators. Simulation studies using multiple DNN
models show that ASCEND achieves significant reduction in
execution time and energy consumption, and exhibits better
scalability, as compared to other state-of-the-art chiplet-based
accelerators.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, ”Deep Residual Learning for Image
Recognition,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770-778, 2016.

[2] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ”Densely
Connected Convolutional Networks,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4700-4708,
2017.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ”ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, pp. 1097-1105, 2012.

[4] R. Mayer and H. A. Jacobsen, ”Scalable Deep Learning on Distributed
Infrastructures: Challenges, Techniques, and Tools,” ACM Computing
Survey, vol. 53, no. 1, pp. 1-37, 2020.

[5] K. Simonyan and A. Zisserman, ”Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint arXiv: 1409.1556,
pp. 1-14, 2014.

[6] V. Sze, Y. Chen, T. Yang, and J. S. Emer, ”Efficient Processing of Deep
Neural Networks: A Tutorial and Survey,” Proc. of the IEEE, vol. 105,
no. 12, pp. 2295-2329, 2017.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ”Going Deeper with Convolutions,”
in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1-9, 2015.



11

[8] M. Tan and Q. Le, ”EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in International Conference on Machine
Learning (ICML), pp. 6105-6114, 2019.

[9] G. Ascia, V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti,
”Improving Inference Latency and Energy of DNNs through Wireless
Enabled Multi-Chip-Module-based Architectures and Model Parameters
Compression,” in Proc. of the IEEE/ACM International Symposium on
Networks-on-Chip (NOCS), pp. 1-6, 2020.

[10] R. Hwang, T. Kim, Y. Kwon, and M. Rhu, ”Centaur: A Chiplet-based,
Hybrid Sparse-Dense Accelerator for Personalized Recommendations,”
in Proc. of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), pp. 968-981, 2020.

[11] A. Kannan, N. E. Jerger, and G. H. Loh, ”Enabling Interposer-based
Disintegration of Multi-core Processors,” in Proc. of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 546-558,
2015.

[12] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler,
”Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-based
Architecture,” in Proc. of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 14-27, 2019.

[13] X. Hu, D. Stow, and Y. Xie, ”Die Stacking is Happening,” IEEE Micro,
vol. 38, no. 1, pp. 22-28, 2018.

[14] P. Fotouhi, S. Werner, J. Lowe-Power, and S. J. B. Yoo, ”Enabling
Scalable Chiplet-based Uniform Memory Architectures with Silicon
Photonics,” in Proc. of the International Symposium on Memory Systems
(MEMSYS), pp. 222-234, 2019.

[15] D. A. B. Miller, ”Rationale and Challenges for Optical Interconnects to
Electronic Chips,” Proc. of the IEEE, vol. 88, no. 6, pp. 728-749, 2000.

[16] D. A. B. Miller, ”Device Requirements for Optical Interconnects to
Silicon Chips,” Proc. of the IEEE, vol. 97, no. 7, pp. 1166-1185, 2009.

[17] A. Shacham, K. Bergman, and L. P. Carloni, ”On the Design of a
Photonic Network-on-Chip,” in Proc. of the IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), pp. 53-64, 2007.

[18] R. Soref, ”The Past, Present, and Future of Silicon Photonics,” IEEE
Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp.
1678-1687, 2006.

[19] K. Bergman, L. P. Carloni, A. Biberman, J. Chan, and G. Hendry,
Photonic Network-on-Chip Design. Springer, 2014.

[20] H. Kwon, A. Samajdar, and T. Krishna, ”MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable Intercon-
nects,” in Proc. of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pp. 461-475, 2018.

[21] Y. Li, A. Louri, and A. Karanth, ”Scaling Deep-Learning Inference with
Chiplet-based Architecture and Photonic Interconnects,” in Proc. of the
ACM/IEEE Design Automation Conference (DAC), pp. 931-936, 2021.

[22] Y. Li, A. Louri, and A. Karanth, ”SPRINT: A High-Performance,
Energy-Efficient, and Scalable Chiplet-based Accelerator with Photonic
Interconnects for CNN Inference,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 33, no. 10, pp. 2332-2345, 2022.

[23] Y. Li, A. Louri, and A. Karanth, ”SPACX: Silicon Photonics-based
Scalable Chiplet Accelerator for DNN Inference,” in Proc. of the IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pp. 831-845, 2022.

[24] Y. Demir, Y. Pan, S. Song, N. Hardavellas, J. Kim, and G. Memik,
”Galaxy: A High-Performance Energy-Efficient Multi-Chip Architecture
Using Photonic Interconnects,” in Proc. of the ACM International
Conference on Supercomputing (ICS), pp. 303-312, 2014.

[25] P. Grani, R. Proieti, V. Akella, and S. J. B. Yoo, ”Design and Evaluation
of AWGR-based Photonic NoC Architectures for 2.5D Integrated High-
Performance Computing Systems,” in Proc. of the IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pp.
289-300, 2017.

[26] Y. Kao and H. J. Chao, ”BLOCON: A Bufferless Photonic Clos
Network-on-Chip Architecture,” in Proc. of the IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), pp. 81-88, 2011.

[27] N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel,
M. A. Watkins, and D. H. Albonesi, ”Leveraging Optical Technology
in Future Bus-based Chip Multiprocessors,” in Proc. of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 492-503,
2006.

[28] C. Li, M. Browning, P. V. Gratz, and S. Palermo, ”LumiNOC: A
Power-Efficient, High-Performance, Photonic Network-on-Chip,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 33, no. 6, pp. 826-838, 2014.

[29] A. Narayan, Y. Thonnart, P. Vivet, and A. K. Coskun, ”PROWAVES:
Proactive Runtime Wavelength Selection for Energy-Efficient Photonic
NoCs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 40, no. 10, pp. 2156-2169, 2020.

[30] A. Narayna, Y. Thonnart, P. Vivet, A. Joshi, and A. K. Coskun, ”System-
Level Evaluation of Chip-Scale Silicon Photonic Networks for Emerging
Data-Intensive Applications,” in Proc. of the Design Automation and
Test in Europe Conference (DATE), pp. 1444-1449, 2020.

[31] A. Narayan, Y. Thonnart, P. Vivet, C. F. Tortolero, and A. K. Coskun,
”WAVES: Wavelength Selection for Power-Efficient 2.5D-Integrated
Photonic NoCs,” in Proc. of the Design Automation and Test in Europe
Conference (DATE), pp. 516-521, 2019.

[32] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary,
”Firefly: Illuminating Future Network-on-Chip with Nanophotonics,”
in Proc. of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), pp. 429-440, 2009.

[33] Y. Thonnart, S. Bernabe, J. Charbonnier, C. Bernard, D. Coriat, C.
Fuguet, P. Tissier, B. Charbonnier, S. Malhouitre, D. Saint-Patric, M.
Assous, A. Narayan, A. Coskun, D. Dutoit, and P. Vivet, ”POPSTAR:
A Robust Modular Optical NoC Architecture for Chiplet-based 3D
Integrated Systems,” in Proc. of the Design, Automation and Test in
Europe Conference (DATE), pp. 1456-1461, 2020.

[34] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn,
”Corona: System Implications of Emerging Nanophotonic Technology,”
in Proc. of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), pp. 153-164, 2008.

[35] A. K. Ziabari, J. L. Abellan, R. Ubal, C. Chen, A. Joshi, and D. Kaeli,
”Leveraging Silicon-Photonic NoC for Designing Scalalbe GPUs,” in
Proc. of the ACM International Conference on Supercomputing (ICS),
pp. 273-282, 2015.

[36] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L.
Benini, ”Origami: A Convolutional Network Accelerator,” in Proc. of the
ACM Great Lakes Symposium on VLSI (GLSVLSI), pp. 199-204, 2015.

[37] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, ”A Dynami-
cally Configurable Coprocessor for Convolutional Neural Networks,”
in Proc. of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), pp. 247-257, 2010.

[38] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
”DianNao: A Small-Footprint High-Throughput Accelerator for Ubiqui-
tous Machine-Learning,” in Proc. of the ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 269-284, 2014.

[39] Y. Chen, J. Emer, and V. Sze, ”Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in Proc.
of the ACM/IEEE International Symposium on Computer Architecture
(ISCA), pp. 367-379, 2016.

[40] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y.
Chen, and O. Temam, ”ShiDianNao: Shifting Vision Processing Closer
to the Sensor,” in Proc. of the ACM/IEEE International Symposium on
Computer Architecture (ISCA), pp. 92-104, 2015.

[41] H. J. Yoo, S. Park, K. Bong, D. Shin, J. Lee, and S. Choi, ”A 1.93
TOPS/W Scalable Deep Learning/Inference Processor with Tetra-Parallel
MIMD Architecture for Big Data Applications,” in Proc. of the IEEE
International Solid-State Curcuits Conference (ISSCC), pp. 80-81, 2015.

[42] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, ”A Massively Parallel Coprocessor for
Convolutional Neural Networks,” in IEEE International Conference on
Application-Specific Systems, Architectures and Processors, pp. 53-60,
2009.

[43] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, ”TETRIS:
Scalable and Efficient Neural Network Acceleration with 3D Memory,” in
Proc. of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pp. 751-764,
2017.

[44] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H.
Ha, P. Raina, C. Kozyrakis, and M. Horowitz, ”Interstellar: Using Halide’s
Scheduling Language to Analyze DNN Accelerators,” in Proc. of the
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 369-383, 2020.

[45] M. Riccardo, L. Cosimo, C. Lee, G. Kamil, and M. Paolo, ”Coupling
Strategies for Silicon Photonics Integrated Chips,” Photonics Research,
vol. 7, pp. 201-239, 2019.

[46] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar
Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R.
Baets, ”Silicon Microring Resonators,” Laser Photonics Reviews, vol. 6,
no. 1, pp. 47-73, 2012.



12

[47] R. Morris, A. Karanth, and A. Louri, ”Dynamic Reconfiguration of 3D
Photonic Networks-on-Chip for Maximizing Performance and Improving
Fault Tolerance,” in Proc. of the IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 282-293, 2012.

[48] S. Van Winkle, A. Karanth, R. Bunescu, and A. Louri, ”Extending
the Power-Efficiency and Performance of Photonic Interconnects for
Heterogeneous Multicores with Machine Learning,” in Proc. of the IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pp. 480-491, 2018.

[49] S. Werner, J. Navaridas, and M. Lujan, ”Designing Low-Power, Low-
Latency Networks-on-Chip by Optimally Combining Electrical and
Optical Links,” in Proc. of the IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 265-276, 2017.

[50] E. Peter, A. Thomas, A. Dhawan, and S. R. Sarangi, ”Active Microring
based Tunable Optical Power Splitters,” Optics Communications, vol.
359, pp. 311-315, 2016.

[51] J. Bashir, E. Peter, and S. R. Sarangi, ”A Survey of On-Chip Optical
Interconnects,” ACM Computing Survey, vol. 51, no. 6, pp. 1-34, 2019.

[52] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A.
Parashar, ”MAESTRO: A Data-Centric Approach to Understand Reuse,
Performance, and Hardware Cost of DNN Mappings,” IEEE Micro, vol.
40, no. 3, pp. 20-29, 2020.

[53] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, ”DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Computer Architecture
Letters (CAL), vol. 10, no. 1, pp. 16-19, 2011.

[54] H. Jayatilleka, M. Caverley, N. A. F. Jaeger, S. Shekhar, and L.
Chrostowski, ”Crosstalk Limitations of Microring-Resonator based WDM
Demultiplexers on SOI,” in IEEE Optical Interconnects Conference (OI),
pp. 48-49, 2015.

[55] C. Sun, C. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S. Peh,
and V. Stojanovic, ”DSENT - A Tool Connecting Emerging Photonics
with Electronics for Opto-Electronic Networks-on-Chip Modeling,” in
Proc. of the IEEE/ACM International Symposium on Networks-on-Chip
(NOCS), pp. 201-210, 2012.

[56] R. Morris and A. Karanth, ”Power-Efficient and High-Performance Multi-
Level Hybrid Nanophotonic Interconnect for Multicores,” in Proc. of the
IEEE/ACM International Symposium on Networks-on-Chip (NOCS), pp.
207-214, 2010.

[57] G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E.
Cunningham, and A. V. Krishnamoorthy, ”25 Gb/s 1V-Driving CMOS
Ring Modulator with Integrated Thermal Tuning,” Optics Express, vol.
19, no. 21, pp. 20435-20443, 2011.

[58] S. Pasricha and S. Bahirat, ”OPAL: A Multi-Layer Hybrid Photonic NoC
for 3D ICs,” in Proc. of the Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 345-350, 2011.

[59] M. Bahadori, M. Nikdast, Q. Cheng, and K. Bergman, ”Universal Design
of Waveguide Bends in Silicon-on-Insulator Photonics Platform,” Journal
of Lightwave Technology, vol. 37, no. 13, pp. 3044-3054, 2019.

[60] A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan,
J. S. Levy, M. Lipson, and K. Bergman, ”Photonic Network-on-
Chip Architectures Using Multilayer Deposited Silicon Materials for
High-Performance Chip Multiprocessors,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 7, no. 2, pp. 1-25, 2011.

[61] A. Joshi, C. Batten, Y. Kwon, S. Beamer, I. Shamim, K. Asanovic, and
V. Stojanovic, ”Silicon-Photonic Clos Networks for Global On-Chip
Communication,” in Proc. of the IEEE/ACM International Symposium
on Networks-on-Chip (NOCS), pp. 124-133, 2009.

[62] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, ”CACTI 6.0:
A Tool to Model Large Caches,” HP Laboratories, vol. 27, pp. 1-24,
2009.

[63] R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan,
”Efficiency Optimization of Silicon Photonic Links in 65-nm CMOS and
28-nm FDSOI Technology Nodes,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems (TVLSI), vol. 24, no. 12, pp. 3450-3459,
2016.

[64] C. DeCusatis, Handbook of Fiber Optic Data Communication: A Practical
Guide to Optical Networking. Academic Press, 2013.

[65] A. V. Krishnamoorthy, R. Ho, X. Zheng, H, Schwetman, J. Lexau, P.
Koka, G. Li, I. Shubin, and J. E. Cunningham, ”Computer Systems based
on Silicon Photonic Interconnects,” Proc. of the IEEE, vol. 97, no. 7,
pp. 1337-1361, 2009.

[66] Y. Thonnart, M. Zid, J. L. Gonzalez-Jimenez, G. Waltener, R. Polster,
O. Dubray, F. Lepin, S. Bernabe, S. Menezo, G. Pares, O. Castany,
L. Boutafa, P. Grosse, B. Charbonnier, and C. Baudot, ”A 10Gb/s
Si-Photonic Transceiver with 150 µW 120µs-Lock-Time Digitally
Supervised Analog Microring Wavelength Stabilization for 1Tb/s/mm2

Die-to-Die Optical Networks,” in Proc. of IEEE International Solid-State
Circuits Conference (ISSCC), pp. 350-352, 2018.

[67] G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E.
Cunningham, and A. V. Krishnamoorthy, ”40 Gb/s Thermally Tunable
CMOS Ring Modulator,” in International Conference on Group IV
Photonics (GFP), pp. 1-3, 2012.

[68] H. Zheng, K. Wang, and A. Louri, ”A Versatile and Flexible Chiplet-
based System Design for Heterogeneous Manycore Architectures,” in
Proc. of the ACM/IEEE Design Automation Conference (DAC), pp. 1-6,
2020.

Yuan Li received the BS degree in physics from the
University of Science and Technology of China in
2010, and the MS degree in microelectronics from
the University of Newcastle upon Tyne in 2011.
He is currently working toward the PhD degree
in computer engineering at the George Washington
University. His research interests include machine
learning architectures, accelerator-rich heterogeneous
systems, and emerging interconnect and memory
technologies. He is a student member of the IEEE.

Ke Wang received the B.S. degree in Electrical
Engineering from Peking University in 2013, and the
M.S. degree in Electrical Engineering from Worcester
Polytechnic Institute in 2015. He is currently working
toward the Ph.D. degree in Computer Engineering
in the School of Engineering and Applied Science
at the George Washington University. His research
work focuses on high-performance, energy-efficient,
fault-tolerant, and secure interconnection networks.

Hao Zheng received the B.S. degree in electrical
engineering from Beijing Jiaotong University, Beijing,
China, and the M.S. degree in electrical engineering
from George Washington University, Washington,
DC, USA, where he is currently pursuing the Ph.D.
degree in computer engineering. His research inter-
ests are in the areas of computer architecture and
parallel computing, with emphasis on interconnection
networks, machine learning techniques for efficient
computing, and energy-efficient manycore architec-
ture designs.



13

Ahmed Louri is the David and Marilyn Karlgaard
Endowed Chair Professor of Electrical and Computer
Engineering at the George Washington University,
which he joined in August 2015. He is also the direc-
tor of the High Performance Computing Architectures
and Technologies Laboratory. Dr. Louri received
the Ph.D. degree in Computer Engineering from
the University of Southern California, Los Angeles,
California in 1988. From 1988 to 2015, he was a
professor of Electrical and Computer Engineering at
the University of Arizona, and during that time, he

served six years (2000 to 2006) as the Chair of the Computer Engineering
Program. From 2010 to 2013, Dr. Louri served as a program director in the
National Science Foundation’s (NSF) Directorate for Computer and Information
Science and Engineering. He directed the core computer architecture program
and was on the management team of several cross-cutting programs. Dr. Louri
conducts research in the broad area of computer architecture and parallel
computing, with emphasis on interconnection networks, optical interconnects
for scalable parallel computing systems, reconfigurable computing systems,
and power-efficient and reliable Network-on-Chips (NoCs) for multicore
architectures. Recently he has been concentrating on: energy-efficient, reliable,
and high-performance many-core architectures; accelerator-rich reconfigurable
heterogeneous architectures; machine learning techniques for efficient comput-
ing, memory, and interconnect systems; emerging interconnect technologies
(photonic, wireless, RF, hybrid) for NoCs; future parallel computing models and
architectures (including convolutional neural networks, deep neural networks,
and approximate computing); and cloud-computing and data centers. He is the
recipient of the 2020 IEEE Computer Society Edward J. McCluskey Technical
Achievement Award, “for pioneering contributions to the solution of on-chip
and off-chip communication problems for parallel computing and manycore
architectures.” Dr. Louri is a Fellow of the IEEE, and he is currently the
Editor-in-Chief of the IEEE Transactions on Computers. More information
can be found at https://hpcat.seas.gwu.edu/Director.html.

Avinash Karanth received the BE degree in elec-
tronics and communications in February 2000 from
the Manipal Institute of Technology, Mangalore
University, and the MS and PhD degrees in the
Electrical and Computer Engineering Department
from The University of Arizona in May 2003 and
August 2006, respectively. Presently, he is the Joseph
Jachinowski Professor in the School of Electrical En-
gineering and Computer Science at Ohio University
in Athens, Ohio. Dr. Karanth directs the Technologies
for Emerging Computer Architecture Lab (TEAL) at

Ohio University. His research interests include computer architecture, optical
interconnects, Network-on-Chips (NoCs) and emerging technologies such as
nanophotonics, 3D, and wireless interconnects. He is the recipient of the NSF
CAREER Award in 2011, the Presidential Research Scholar Award in 2017,
the Best Paper Award at the ICCD 2013 conference and his papers have
been nominated for Best Paper at the IEEE Symposium on Network-on-Chips
(NoCs) in May 2010 and the IEEE Asia & South Pacific Design Automation
Conference (ASP-DAC) in January 2009. He is a senior member of the IEEE
and member of ACM.


