
1

SPRINT: A High-Performance, Energy-Efficient,
and Scalable Chiplet-based Accelerator with

Photonic Interconnects for CNN Inference
Yuan Li, Student Member, IEEE, Ahmed Louri, Fellow, IEEE, Avinash Karanth, Senior Member, IEEE

Abstract—Chiplet-based convolution neural network (CNN) accelerators have emerged as a promising solution to provide substantial
processing power and on-chip memory capacity for CNN inference. The performance of these accelerators is often limited by inter-chiplet
metallic interconnects. Emerging technologies such as photonic interconnects can overcome the limitations of metallic interconnects due
to several superior properties including high bandwidth density and distance-independent latency. However, implementing photonic
interconnects in chiplet-based CNN accelerators is challenging and requires combined effort of network architectural optimization and
CNN dataflow customization. In this paper, we propose SPRINT, a chiplet-based CNN accelerator that consists of a global buffer and
several accelerator chiplets. SPRINT introduces two novel designs: (1) a photonic inter-chiplet network that can adapt to specific
communication patterns in CNN inference through wavelength allocation and waveguide reconfiguration, and (2) a CNN dataflow that can
leverage the broadcasting capability of photonic interconnects while minimizing the costly electrical-to-optical and optical-to-electrical
signal conversions. Simulations using multiple CNN models show that SPRINT achieves up to 76% and 68% reduction in execution time
and energy consumption, respectively, as compared to other state-of-the-art chiplet-based architectures with either metallic or photonic
interconnects.

Index Terms—Convolution neural network, Chiplet, Accelerator, Photonic interconnects

✦

1 INTRODUCTION

THE ever increasing size of convolution neural network
(CNN) models [1], [2], [3], [4] is driving the need

to scale computing systems for higher processing power
and on-chip memory capacity. As monolithic chip scaling
slows down [5], [6], the chiplet-based architecture [7], [8]
is considered a viable approach to continue the growth of
computing system performance. Prior work [5] has explored
performing inference of large-scale CNN models on chiplet-
based accelerators. However, in such work, it has been
shown that inter-chiplet metallic interconnects pose a major
challenge to system performance due to excess latency and
energy consumption [5]. This motivates us to explore other
disruptive interconnect technologies for these chiplet-based
accelerators.

Photonic interconnects can overcome the limitations of
metallic interconnects due to superior properties such as
high bandwidth density [9], [10] and distance-independent
latency [11], [12], [13]. Photonic interconnects have been
utilized in prior manycore architectures [14], [15], [16], [17],
[18], [19]. However, implementing photonic interconnects in
chiplet-based CNN accelerators requires combined effort of
architectural optimization and dataflow customization. As
stated above, prior photonic inter-chiplet networks [14], [15],
[16], [17], [18], [19] target manycore architectures executing
general applications, and consequently, often exhibit full
connectivity and uniform bandwidth between chiplets to

• Yuan Li and Ahmed Louri are with the Department of Electrical and
Computer Engineering, George Washington University, Washington, DC
20052. E-mail: {liyuan5859, louri}@gwu.edu.

• Avinash Karanth is with the School of Electrical Engineering and Computer
Science, Ohio University, Athens, OH 45701. E-mail: karanth@ohio.edu.

support diverse communication patterns observed in general
applications. By contrast, the communication involved in
CNN inference has several specific features such as non-
uniform bandwidth demand between different chiplets, and
recurrence of a few communication patterns [1], [2], [20],
[21]. An optimized or a domain-specific photonic inter-
chiplet network exploiting these specific features would
significantly improve the performance, energy consumption,
and scalability of chiplet-based CNN accelerators.

Additionally, the CNN dataflow should be customized
to adapt to the unique properties of photonic interconnects.
Most prior CNN dataflow optimizations [5], [22], [23], [24],
[25], [26], [27], which are proposed for accelerators with only
metallic interconnects, target reducing the data transmission
distance by improving local data reuse. However, because of
the distance-independent property of photonic interconnects,
the data transmission distance across chiplets would not be
a primary obstacle to system performance, possibly making
the prior CNN dataflow optimizations less effective.

In this paper, we propose SPRINT - a chiplet-based accel-
erator with Silicon Photonic Reconfigurable INTerconnects
for CNN inference. The SPRINT architecture consists of
(1) a photonic inter-chiplet network that connects a global
buffer (GLB) and accelerator chiplets, and (2) an optically-
enhanced and tailored CNN dataflow. Specifically, the pho-
tonic inter-chiplet network is optimized to adapt to the
specific communication patterns in CNN inference through
wavelength allocation and waveguide reconfiguration. The
novel CNN dataflow exploits the inherent broadcast and
multicast capabilities of photonic interconnects [28], [29], [30],
while minimizing the costly electrical-to-optical (E/O) and
optical-to-electrical (O/E) signal conversions [9], [31]. The

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

combined effects of the photonic inter-chiplet network and
the tailored CNN dataflow result in significant reduction in
execution time and energy consumption for CNN inference.
We compare SPRINT with two state-of-the-art chiplet-based
architectures using either an electrical mesh [5] or a photonic
crossbar [18] for inter-chiplet communication. Simulation
studies using multiple CNN models show that SPRINT
achieves up to 76% and 68% reduction in execution time
and energy consumption, respectively. Furthermore, when
scaling the system to include 128 chiplets, the reduction in
execution time and energy consumption increases to 78%
and 83%, respectively, indicating the promising scalability of
the proposed SPRINT architecture.

2 BACKGROUND AND MOTIVATION

2.1 Communication in CNN Inference
CNN models often consist of a series of different layers

(e.g., convolution layers, fully-connected layers, activation
layers, etc.), where the convolution layers are most common
and take a large fraction of the overall computations [32],
[33], [34], [35]. In this paper, we focus on the processing of
the convolution layers and fully-connected layers.

2.1.1 Computation of a Convolution Layer
The computation of a convolution layer can be formulated

as a multi-dimensional nested loop over weight kernels,
input feature maps (ifmaps), and output feature maps
(ofmaps). The dimensions include the height (R) and width
(S) of the weight kernels, the height (E) and width (F) of the
ofmaps, the number of input channels (C), and the number
of weight kernels (M). The height (H) and width (W) of the
ifmaps are not independent and can be derived from the
previous dimensions. Fig. 1 (b) shows a nested loop example
assuming each of the six dimensions (R, S, E, F, C, M) has a
value of 2. Fig. 1 (a) presents the detailed computations in an
iteration of the C loop. In this iteration, four weights (labeled
1, 2, 3, and 4) of each weight kernel and four input features
(labeled a, b, d, and e) are transmitted to each computation
unit. Within a computation unit, products of weights and
corresponding input features are accumulated to a partial
sum (psum) of an output feature. A complete output feature
is obtained by adding up the psums of all iterations in the C
loop. The above process is repeated to generate other output
features as the weight kernels slide across the ifmaps.

2.1.2 Communication Patterns
Data communications incurred during the computation of

a convolution layer include transmitting weights and input
features to the computation units and gathering the psums
or output features generated in the computation units back
to memory. Unlike the diverse communication patterns in
general applications, the communication patterns in CNN
accelerators are fairly regular and largely determined by the
dimension values of the nested loop, the parameters of the
computing system (e.g., the number of computation units),
and the dataflow utilized. Specifically, the communications
in CNN accelerators exhibit the following three features:
Non-uniform Bandwidth Demand: Assume that the input
data (weights and input features) are initially located in
the GLB and the generated output data (psums or output

1 for E = [0, 2)

2 for F = [0, 2)

3 for C = [0, 2)

4 for M = [0, 2)

5 for R = [0, 2)

6 for S = [0, 2)

7 Ofmaps [M, E, F] += Weights [M, C, R, S] * Ifmaps [C, R + E – 1, S + F - 1]

a b c
d e f

g h i

1 2
3 4

R = 2

C = 2

M = 2 H = 3

W = 3

E = 2

F = 2

M = 2
C = 2S = 2

2

b

3

d

4

e

1

a

1 2
3 4

b

2

d

3

e

4

a

1

Broadcast ifmaps

Unicast weights

Unicast weights Gather psums / ofmaps

Gather psums / ofmaps

Weights Ifmaps OfmapsComputation Unit

Input Data Output DataComputation

(a) Computations in one iteration in C loop

(b) Nested loop representation

1 2
3 4

Fig. 1: Computations in a sample convolution layer and the
corresponding nested loop representation. Communications
incurred include unicasting weights, broadcasting ifmaps,
and gathering psums or ofmaps.

features) are transmitted back to the GLB. The bandwidth
needed for data exchange between the GLB and the com-
putation units is often non-uniform. As shown in Fig. 1
(a), in one iteration of the C loop, 13 data elements (4
weights and 9 input features) are transmitted from the
GLB to a computation unit while only 4 data elements
(4 psums) are transmitted from a computation unit to the
GLB. Meanwhile, no data is exchanged between the two
computation units. As such, prior inter-chiplet networks [15],
[16], [18] which provide equal per-chiplet bandwidth would
clearly be inefficient, if applied to CNN accelerators with
GLB and computation units on different chiplets.
Recurrence of Communication Patterns: As shown in Fig.
1 (a), there are three communication patterns in the C loop:
unicast of weights, broadcast of input features, and gathering
of psums or output features. These communication patterns
recur in each iteration of the outer E and F loops. A natural
approach to efficiently support the recurrent communication
patterns is to design a network that can dynamically switch
between multiple configurations, each of which adapts to a
specific communication pattern.
Prevalent Broadcasting: Broadcast communication is preva-
lent in the computation of convolution layers [2], as a large
fraction of computations often share the same input data.
As shown in Fig. 1 (a), the input features are broadcast to
two separate computation units, because each computation
unit processes one weight kernel and both weight kernels
slide across the same ifmaps. Although prior dataflow
optimizations also exploit broadcast and multicast [5], [22],
[23], [24], [25], [26], [27], these operations are often very costly
to implement in metallic interconnects in terms of latency,
energy consumption, and overall circuity area.

2.2 Photonic Interconnects
In this subsection, we introduce basic optical components

and discuss the drawbacks of existing photonic inter-chiplet
networks when applied to chiplet-based CNN accelerators.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

C
ou

pl
er

Thermal
Tuning

+ -

Serializer

Driver

Thermal
Tuning

TIA

Comparator

P
ho

to
de

te
ct

or

Waveguide

O
ff-

C
hi

p
La

se
r Thermal

Tuning

+ -

Serializer

Driver

Thermal
Tuning

TIA

Comparator

Modulated Photonic Signalλ0 λ1

Transmitter ReceiverTransmitter Receiver

MRR 0 MRR 1 MRR 2 MRR 3

Fig. 2: A wavelength division multiplexing photonic link.

2.2.1 Photonic Interconnects
Fig. 2 presents a photonic link with wavelength division

multiplexing (WDM). In this example, an off-chiplet laser
emits two optical signals with different wavelengths, λ0 and
λ1. The optical signals are then coupled into a waveguide
using an optical coupler [9]. At the transmission side, two
micro-ring resonators (MRRs) labeled MMR0 and MMR1 are
used as optical modulators to separately modulate input
signals at wavelengths λ0 and λ1. At the receiving side,
another two MRRs labeled MMR2 and MMR3 are used as
optical filters to select a specific modulated wavelength. The
selected wavelength is detected by a photodetector [9] and
converted back to an electrical signal. The electrical signals
are then amplified by the transimpedance amplifiers (TIAs)
and forwarded to comparators to retrieve the original data
transmitted. A MRR, used as either an optical modulator or
filter, is tuned by a resistive heater controlled by a thermal
tuning unit to mitigate thermal and process variations [9],
[12]. Two or more wavelengths can be multiplexed onto the
same waveguide using WDM technique.

2.2.2 Photonic Inter-chiplet Networks
Several photonic inter-chiplet networks [14], [15], [16],

[17], [18], [19] have been proposed recently. However, these
networks are implemented in systems with CPU/GPU
chiplets running general manycore applications. The re-
sulting uniform bandwidth resource allocation and full
connectivity between chiplets lead to excessive implementa-
tion costs. For example, [16], [18], [19] propose a photonic
crossbar using single-write multiple-read (SWMR) channels.
The number of required MRRs in a photonic crossbar
scales quadratically with the number of chiplets, leading
to excessive area cost and energy consumption [9], [28], [29].
By contrast, the proposed SPRINT architecture is designed
specifically for CNN inference application, which results
in an optimized photonic inter-chiplet network with much
fewer MRRs.

3 SPRINT ARCHITECTURE

SPRINT architecture consists of one GLB and several
accelerator chiplets integrated in a package. A reconfig-
urable photonic inter-chiplet network is designed to provide
communication between the GLB and other accelerator
chiplets. The photonic inter-chiplet network supports (1)
data transmission from the GLB to accelerator chiplets, and
(2) data gathering from accelerator chiplets to the GLB.

(a) (b)

n +

Through PortInput Port

Drop Port

p +

p +

MRR 0

MRR 1

Through PortInput Port

Drop Port

n +

p +

p +

MRR 0

MRR 1

Fig. 3: The electrical-optical switch in (a) off or (b) on state.

Drop Port

Through PortInput Port

n +p +MRR

(a) (b)
Drop Port

Through PortInput Port

n +p +MRR

α

(1 – α)

Fig. 4: The tunable splitter in (a) disabled state or (b) with a
split ratio of α/(1-α).

3.1 Photonic Inter-chiplet Network
3.1.1 Components for Network Reconfiguration

We introduce two additional optical components utilized
in the SPRINT photonic inter-chiplet network to support
different communication patterns from the GLB to accelerator
chiplets: electrical-optical switch [36] and tunable splitter
[37].
Electrical-optical Switch: SPRINT includes 1×2 electrical-
optical switches, each of which is associated to an accelerator
chiplet. As shown in Fig. 3, a 1×2 electrical-optical switch
consists of two waveguides (one with the input and through
ports while the other one with the drop port) and two MRRs
(labeled MRR0 and MRR1). The two MRRs are positioned
between the two waveguides. Regions inside and outside
the MRRs are p-type and n-type semiconductor regions,
respectively, to form the PIN diode structure. Switching an
optical signal between the through port and the drop port is
accomplished with the switching of MRR resonance using
the free-carrier dispersion effect [36]. When the MRRs are
at off-resonance as shown in Fig. 3 (a), the optical signal
from the input port is directly forwarded to the through
port. When the MRRs are at on-resonance as shown in Fig. 3
(b), the optical signal from the input port is guided through
two MRRs to the drop port. In SPRINT, these 1×2 electrical-
optical switches are utilized to either combine or separate
multiple waveguides.
Tunable Splitter: Another component included in SPRINT is
the tunable splitter [37]. Different from MRRs working at on-
resonance and off-resonance states as optical modulators or
filters, a tunable splitter works in the transient zone between
on-resonance and off-resonance. As shown in Fig. 4, the
regions inside and outside the MRR are doped to form the
PIN diode structure. When applying an appropriate voltage
to the PIN diode structure, the optical signal from the input
port is split into two parts and guided to the drop port (α
fraction) and through port ((1-α) fraction), respectively.
By tuning the applied voltage (0 to 5 volts), split ratios
in the range of 0.4 to 1.8 can be obtained [37]. Digital-to-
analog converters (DACs) are utilized to accurately adjust

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

Photodetector

1×2 Switch

Tunable Splitter

Filter

Modulator

Waveguide

Data Wire

Control Wire

Reconfiguration

Controller Unit (RCU)

Transmitter

Receiver

O
ff-

ch
ip

 L
as

er GLB Memory Banks

Non-convolution (bias,

activation, scaling,

pooling, etc.) Engine

Global Buffer (GLB)

Chiplet 0

0 1 2 3

Chiplet 1

0 1 2 3

Chiplet 2

0 1 2 3

Chiplet 3

0 1 2 3

λ0 λ1 λ2 λ3
GLB-to-Accelerator Communication

λ0 λ1 λ2

λ0 λ1 λ2

λ0 λ1 λ2

λ0 λ1 λ2 λ3

λ3

λ3

λ3

λ4 λ5 λ6 λ7

λ4 λ5 λ6 λ7

λ4
λ5

λ6
λ7

λ4 λ5 λ6 λ7

λ0
λ1

λ2
λ3 λ0 λ1 λ2 λ3

λ0 λ1 λ2 λ3

λ0 λ1 λ2 λ3

λ0 λ1 λ2 λ3

λ4 λ5 λ6 λ7

λ0
λ1
λ2
λ3

λ0
λ1
λ2
λ3

λ0
λ1
λ2
λ3

Accelerator-to-GLB Communication

Near-data Accumulation

Engine (NAE)

Switch 0

Switch 1

Switch 2

Waveguide 0

Waveguide 1

Waveguide 3

Waveguide 2

Fig. 5: A small-scale SPRINT architecture. We assume four accelerator chiplets, each with four receivers and one transmitter.
Eight wavelengths are multiplexed in a photonic inter-chiplet network. Wavelengths λ0, λ1, λ2, λ3 are responsible for
data transmission from the GLB to all other accelerator chiplets, while wavelengths λ4, λ5, λ6, λ7 are responsible for data
transmission from a corresponding accelerator chiplet to the GLB. The legends illustrate some key components and wires.
An optical component with a specific color means this component is associated with one wavelength only.

the applied voltage. In SPRINT, a tunable splitter is utilized
to split an appropriate portion of the power of an optical
signal for detection purpose while forwarding the rest of the
optical signal to downstream locations. We cascade multiple
tunable splitters [38] in cases where split ratios at a wider
range are necessary.

3.1.2 Photonic Inter-chiplet Network
For clarity, we illustrate the photonic inter-chiplet net-

work of a scale-down SPRINT architecture that consists of a
GLB and four accelerator chiplets in Fig. 5. The photonic inter-
chiplet network consists of two parts: (1) GLB-to-accelerator
communication and (2) accelerator-to-GLB communication.
In this example, eight wavelengths are utilized for the
inter-chiplet communication. All the optical components
(e.g., waveguides, MRRs, photodetectors, electrical-optical
switches, etc.) are implemented on a silicon interposer [39]
using CMOS compatible process, while all the electrical
peripheral circuits are implemented on the silicon dies of the
GLB and accelerator chiplets. In this subsection, we describe
the architectural innovations in SPRINT photonic inter-
chiplet network including wavelength allocation for non-
uniform bandwidth demand, and waveguide reconfiguration
for recurrent communication patterns. We further discuss the
physical implementation of this network.
Wavelength Allocation: We divide all the available wave-
lengths into two groups - one group for data transmission
from the GLB to accelerator chiplets (λ0, λ1, λ2, λ3 in Fig.
5), while the other group for data gathering from accelerator
chiplets to the GLB (λ4, λ5, λ6, λ7 in Fig. 5). Although
wavelengths are equally divided into the two groups in
the example shown in Fig. 5, this is not the case in the
full-scale SPRINT architecture, where wavelengths are non-
uniformly allocated based on the specific bandwidth demand.
In Section 4, we demonstrate that the bandwidth demand
may vary when different CNN dataflows and chiplet-level

architectures are implemented, or when different convolution
layers are processed, as these factors significantly impact the
transmission of weights, input features, and psums. Please
note that the number of wavelengths in the group for data
gathering from accelerator chiplets to the GLB is proportional
to the number of accelerator chiplets in the system, as each
accelerator chiplet is assigned a unique wavelength (e.g.,
wavelength λ4 is assigned to Chiplet 0 in Fig. 5).
GLB-to-Accelerator Communication: This communication,
represented by the upper part of Fig. 5, is used to transmit
weights and input features from the GLB to accelerator
chiplets. Due to the recurrent unicast and broadcast com-
munication patterns shown in Fig. 1 and broadly observed
in CNN inference [2], we propose three communication
modes for the data transmission from the GLB to accelerator
chiplets, namely unicast mode, broadcast mode, and hybrid
mode. The unicast mode is used to simultaneously transmit
exclusive data from the GLB to each individual accelerator
chiplet with equal bandwidth. As shown in Fig. 5, four
separate waveguides connect the GLB with corresponding
accelerator chiplets (e.g., Waveguide 0 connects the GLB
with Chiplet 0), forming four dedicated communication
channels. To eliminate interference, the 1×2 electrical-optical
switches connecting adjacent waveguides (e.g., Switch 0
that connects Waveguide 0 and Waveguide 1) are tuned
at off-resonance. Further, the tunable splitters are all disabled
since there are no accelerator chiplets sharing the same
communication channel. Data is transmitted from the GLB
to an accelerator chiplet using wavelengths λ0, λ1, λ2, and
λ3.

The broadcast mode is used to transmit the shared data
from the GLB to all accelerator chiplets in the system. As
shown in Fig. 5, all four waveguides (Waveguide 0-3) are
combined into a SWMR channel by tuning 1×2 electrical-
optical switches (Switch 0-2) at on-resonance. The tunable
splitters are enabled and tuned to different split ratios based

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

(a) Schematic view (b) Physical layout

Serializer +
-

TIAComparator

Comparator

Comparator

Driver

fr
om

 lo
ca

l P
E

s

Receiver
Comparator

Chiplet 2

Micro-bump

W
av

eg
ui

de
 2

Receiver

Receiver

Receiver

TIA

TIA

TIA

Tunable Splitter

Modulator

Photonic Interposer

Thermal

Filter

Thermal

Thermal

Thermal

Thermal

Photodetector

Photodetector

Photodetector

Photodetector

to
lo

ca
l P

E
s

Reconfiguration Controller Unit (RCU)

Transmitter

λ0

λ1

λ2

λ3

W
av

eg
ui

de
 3

Switch 2

λ6

A
cc

el
er

at
or

-t
o-

G
LB

W
av

eg
ui

de

PE

RCU

Transmitter

Receiver

Filter
Tunable Splitter

Accelerator-to-GLB

Waveguide

λ6

Micro-bump

Photodetector

Switch 2

Chiplet 2

Photonic Interposer

λ0
λ1

λ2
λ3

Waveguide 3

Waveguide 2
Modulator

Fig. 6: The physical implementation of the SPRINT photonic inter-chiplet network, taking Chiplet 2 in Fig. 5 as an
example. The legends utilized here are compatible with the ones in Fig. 5.

on their positions in the SWMR channel. As the example
shown in Fig. 5, tunable splitters attached to Chiplet 0,
Chiplet 1, and Chiplet 2 are tuned to split ratios of
3/1, 2/1, and 1/1, respectively, based on the number of
downstream accelerator chiplets along the channel. Please
note that there are no tunable splitters attached to the last
accelerator chiplet (Chiplet 3). Data is broadcast from the
GLB to all accelerator chiplets using wavelengths λ0, λ1, λ2,
and λ3.

The hybrid mode works as a combination of previous
two communication modes. In this mode, the waveguides
(Waveguide 0-3) are grouped into multiple segmented
SWMR or dedicated communication channels. Some 1×2
electrical-optical switches are tuned at off-resonance while
the others are tuned at on-resonance to separate segmented
channels and maintain intra-segment connectivity, respec-
tively. The tunable splitters are tuned to different split ratios
based on their positions in the corresponding segmented
channel. In the example shown in Fig. 5, we can create
two segmented SWMR channels, each connecting the GLB
to a set of two accelerator chiplets (Chiplet 0/1 and
Chiplet 2/3), by tuning Switch 0 and Switch 2 2 at
on-resonance and Switch 1 at off-resonance. Accordingly,
tunable splitters attached to Chiplet 0 and Chiplet 2
are tuned to split ratio of 1/1, while tunable splitters attached
to Chiplet 1 are disabled. Further, by tuning Switch 2
at off-resonance and disabling tunable splitters attached
to Chiplet 2, a previous segmented SWMR channel is
divided into two dedicated communication channels. The
hybrid mode is introduced to support more sophisticated
communication patterns observed in CNN inference other
than unicast and broadcast. It is particularly useful in cases
when accelerator chiplets in the system are not fully occupied,
or when multiple CNN layers with distinct communication
patterns are processed in a pipelined manner.

The above three communication modes for GLB-to-
accelerator communication can be tuned at runtime by
setting appropriate switching signals and split ratios on 1×2
electrical-optical switches and tunable splitters, respectively.
In Section 4.2, we will present how unicast and broadcast
modes are utilized in turn for transmission of weights

and input features, respectively, when different chiplet-level
accelerator architectures and dataflows are assumed.
Accelerator-to-GLB Communication: This communication,
represented by the lower part of Fig. 5, is used to collect the
psums and output features from the accelerator chiplets and
transmit them to the GLB. The photonic inter-chiplet network
works as a multiple-write single-read (MWSR) channel.
Each accelerator chiplet is assigned a specific wavelength
(e.g., λ4 is assigned to Chiplet 0 in Fig. 5). Psums and
output features generated by different accelerator chiplets are
transmitted on different wavelengths (λ4, λ5, λ6, λ7 in Fig.
5) and obtained by receivers at the GLB side. The received
psum are accumulated in the near-data accumulation engine
(NAE) and stored in GLB for future reference, while output
features go through bias and activation functions and act as
the input data of the next CNN layer.

3.1.3 Physical Implementation
Fig. 6 depicts the physical implementation of SPRINT

photonic inter-chiplet network corresponding to the SPRINT
architecture shown in Fig. 5. For simplicity, we only present
Chiplet 2 and its associated electrical and optical compo-
nents. The physical implementation of the entire SPRINT
photonic inter-chiplet network can be easily inferred.

As shown in Fig. 6, the electrical circuits of transmitters
and receivers, the reconfiguration controller unit (RCU),
and multiple processing elements (PEs) of Chiplet 2 are
integrated on a separate silicon die and connected to the
photonic interposer through micro-bumps [39]. RCU is used
to setup the communication mode for GLB-to-accelerator
communication from three available modes discussed in
Section 3.1.2. RCU switches the 1×2 electrical-optical switch
between on-resonance and off-resonance, and tunes as-
sociated tunable splitters to appropriate split ratios with
DACs. The micro-bumps are used for (1) RCU and thermal
tuning signal transmission from an accelerator chiplet to
the photonic interposer, and (2) data exchange between the
photonic interposer and accelerator chiplets. We only show
the RCU tuning signal transmission (dashed lines) and data
exchange between the photonic interposer and the accelerator
chiplet (solid lines) in Fig. 6 (b), for simplicity’s sake.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

Weights Ifmaps

Data from GLB:

Data to GLB:

Mode Selected:

1 2
3 4 a b c

d e f
g h i

1 2 3 4

1 2 3 4
a b d e c f d g h f i

1psum 2psum 3psum 4psum

Unicast Broadcast

Data transmission in an iteration of the C loop

Time
Time Step 1 2 3 4 5 6 7 8 9

1 2
3 4

1 2
3 4

Ofmaps

Fig. 7: SPRINT GLB-to-accelerator communication mode selection when using weight-stationary [5] dataflow. We present
data transmission in one iteration of the C loop and the selected communication modes.

Data from GLB:

Data to GLB:

Mode Selected:

3 4

3 4
d e

1psum
2psum

3psum
4psum

Unicast Broadcast

Data transmission in an iteration of the C loop

Time
1 2

1 2
a b f g h c i

Broadcast Unicast

Time Step 1 2 3 4 5 6 7 8

Weights Ifmaps

1 2
3 4 a b c

d e f
g h i1 2

3 4

1 2
3 4

Ofmaps

Fig. 8: SPRINT GLB-to-accelerator communication mode selection when using row-stationary [22] dataflow. We present data
transmission in one iteration of the C loop and the selected communication modes.

All optical components (e.g., waveguide, modulator, filter,
photodetector, tunable splitter, and 1×2 electrical-optical
switch) are integrated on the photonic interposer. There are
mainly three waveguides shown in Fig. 6: Waveguide 2
and Waveguide 3 that connect the GLB to Chiplet 2
and Chiplet 3, respectively, and another waveguide for
accelerator-to-GLB communication. Waveguide 2 are con-
nected to Waveguide 3 through the drop port of Switch
2. These main waveguides are located in the same layer
in the interposer. Modulators, filters, tunable splitters, and
1×2 electrical-optical switches are vertically coupled [40] to
the above waveguides. The drop port of a tunable splitter
is connected to the corresponding photodetector through
another waveguide that is located in a separate layer [41] in
the interposer from previously discussed main waveguides,
to avoid waveguide crossing.

We present the working flow of the components involved
in Fig. 6 (b), by taking the broadcast mode in GLB-to-
accelerator communication as an example. Modulated wave-
lengths λ0, λ1, λ2, and λ3 in Waveguide 2 are selected by
vertically coupled filters and guided to separate tunable split-
ters. Since the broadcast mode is enabled and there is only
one downstream accelerator chiplet after Chiplet 2, the
split ratio of the tunable splitters are tuned to 1/1. The power
of each wavelength is split into two equal portions: one
portion from the drop port of the tunable splitter is guided to
a corresponding photodetector for detection while the other
portion from the through port is collected and merged into
Waveguide 3 through Switch 2. The photocurrent signals
from photodetectors are transmitted through micro-bumps
to receivers and converted to transmitted data.

3.2 Chiplets in SPRINT Architecture
GLB: Two additional modules, NAE and non-convolution
engine, are integrated on the GLB silicon die. NAE performs
accumulation operations on psums collected from accelerator
chiplets. In the prior chiplet-based CNN accelerator [5], an

accelerator chiplet may forward the psums locally generated
to a remote accelerator chiplet for cross-chiplet accumulation,
possibly leading to communication between two arbitrary
accelerator chiplets. In this case, costly E/O and O/E signal
conversions are inevitable if a photonic inter-chiplet network
is used. By exploiting the distance-independent property
of photonics, psums generated in accelerator chiplets are
collected and transmitted back to NAE for accumulation,
significantly reducing the E/O and O/E signal conversions.
The non-convolution engine is used to process the non-
convolution layers in CNN models by performing functions
such as bias, activation, scaling, and pooling.
Accelerator Chiplet: An accelerator chiplet consists of an
RCU, electrical circuits for transmitters and receivers, and
multiple PEs as shown in Fig. 5. RCU is responsible for
tuning the 1×2 electrical-optical switch and tunable splitters,
as we have discussed in Section 3.1.3. The respective numbers
of circuits for transmitters and receivers are determined by
the number of wavelengths used for GLB-to-accelerator and
accelerator-to-GLB communications. In Section 4.2, We will
show that the respective numbers of wavelengths for GLB-
to-accelerator and accelerator-to-GLB communications may
vary when different chiplet-level architectures or underlying
dataflows are assumed.

4 SPRINT DATAFLOW CUSTOMIZATION

4.1 Package-level Data Partition

The conventional CNN dataflow optimizations [5], [22],
[23], [24], [25], [26], [27] are proposed for accelerators with
only metallic interconnects. Such dataflow optimizations
often target reducing data transmission distance by improv-
ing local data reuse. As SPRINT architecture relies on a
photonic inter-chiplet network with distance-independent
latency, prior dataflow optimizations would not necessarily
be effective. This is because (1) data transmission distance
would not be a primary obstacle to system performance, and

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

(2) new unaddressed factors (e.g., utilization of broadcast
and multicast communications, the number of E/O and O/E
signal conversions, etc.) may have significant impact on
system performance.

At the package level, we spatially distribute the com-
putations of each weight kernel in the M dimension to an
accelerator chiplet and temporally iterate the computations of
each input channel in the C dimension. In doing so, the same
input feature would be consumed by all involved accelerator
chiplets, leading to more opportunities for broadcasting or
multicasting communication. Meanwhile, the accumulation
computations along the C dimension are confined in each
individual accelerator chiplet, reducing cross-chiplet accu-
mulations, hence, reducing the number of required E/O and
O/E signal conversions.

4.2 Chiplet-level Dataflow

In this subsection, we discuss different configurations of
the SPRINT photonic inter-chiplet network when assuming
different chiplet-level accelerator architectures with weight-
stationary (WS) [5] or row-stationary (RS) [22] CNN dataflow.
In Section 6, we present the simulation results when assum-
ing two additional CNN dataflows, namely output-stationary
(OS) dataflow [23] and no-local-reuse (NLR) dataflow [27].

4.2.1 Accelerator Chiplet with Weight-stationary Dataflow
We assume that the accelerator chiplet architecture is

similar to [5] and WS CNN dataflow is adopted. The circuits
for transmitters and receivers and the local PEs are connected
by a 2D electrical mesh intra-chiplet network as in [5].
Fig. 7 presents the data transmission in an iteration of
the C loop, using the same input CNN layer as in Fig. 1.
The working mode of GLB-to-accelerator communication
switches regularly based on the type of the transmitted data.

In Time Step 1, weights from the same input channel
(C dimension) but different weight kernels (M dimension) are
transmitted from the GLB to different accelerator chiplets
using the unicast mode. Since WS dataflow keeps weights
stationary within a PE, no other weights need to be trans-
mitted before the completion of current iteration of the
C loop. Starting from Time Step 2, the GLB broadcasts
input features to two involved accelerator chiplets. In Time
Step 4, 6, and 8, different input features are broadcast
(assume that the local ifmap buffer in a PE can hold all
the received input features for local reuse). Consequently,
the broadcast mode for GLB-to-accelerator communication
is selected and maintained. In Time Step 3, 5, 7, and 9,
psums of corresponding output features are either stored
for future intra-chiplet accumulation or transmitted back
to the GLB using accelerator-to-GLB communication. Time
Step 9 indicates the completion of the current iteration
of the C loop. Similar computations and data transmission
are performed for the next input channel. The final output
features are obtained by accumulating the corresponding
psums in all iterations of the C loop. For each iteration of
the C loop, GLB-to-accelerator communication is switched
between unicast and broadcast modes once. Please note
that it is not necessary to switch communication mode this
frequently as in Fig. 7, as long as there is sufficient buffer
capacity to hold required input data and intermediate results.

The number of wavelengths for GLB-to-accelerator com-
munication and the number of wavelengths for accelerator-
to-GLB communication are determined by the accelerator
chiplet architecture and the dataflow utilized. In the case
shown in Fig. 7, each local PE requires specific weights
and input features for computation while the generated
psums can be accumulated across local PEs, leading to a
peak bandwidth demand ratio of 4:1 for GLB-to-accelerator
and accelerator-to-GLB communications. Consequently, we
allocate 80% of the total wavelengths for GLB-to-accelerator
communication. This allocation may vary when the chiplet-
level architecture or dataflow is altered.

4.2.2 Accelerator Chiplet with Row Stationary Dataflow
We assume that the accelerator chiplet architecture is

similar to [22] and RS CNN dataflow is adopted. Multiple
X-buses and the circuits for transmitters and receivers are
connected by a Y-bus, while each X-bus is used to connect
a group of local PEs as in [22]. Fig. 8 presents the data
transmission in an iteration of the C loop, using the same
input CNN layer as in Fig. 1. The working mode of GLB-
to-accelerator communication switches regularly, but in a
different pattern from the one described in Section 4.2.1,
indicating the significant impact of chiplet-level accelerator
chiplet architecture and underlying dataflow on inter-chiplet
communication.

In Time Step 1, two rows of weights from the same
input channel (C dimension) but different weight kernels
(M dimension) are transmitted from the GLB to different
accelerator chiplets using the unicast mode. In Time Step
2, a portion of the second row of the input features (labeled d
and e) is broadcast to two involved accelerator chiplets using
the broadcast mode. In Time Step 3, GLB-to-accelerator
communication is switched back to the unicast mode to
transmit another two rows of weights from the same input
channel but different weight kernels. In Time Step 4 and 6,
the broadcast mode is selected and maintained to respectively
transmit input features labeled a, b, f, g, h and input features
labeled c and i. The transmission of input features follow
the exact pattern as in [22], which enables input feature
reuse between PEs along diagonals. In Time Step 5, 7,
and 8, psums of corresponding output features are generated
and transmitted back to the GLB using accelerator-to-GLB
communication. Time Step 8 indicates the completion of
the current iteration of the C loop. Similar computations and
data transmission are performed for other iterations of C
loop until final output features are obtained.

According to [22], the weights and input features are
reused along horizontal and diagonal directions while the
psums are accumulated along the vertical direction, making
a peak bandwidth demand ratio of 3:1 for GLB-to-accelerator
and accelerator-to-GLB communications. Consequently, we
allocate 75% of the total wavelengths for GLB-to-accelerator
communication. The allocation is different from Section 4.2.1
because a different chiplet-level dataflow is utilized.

5 EVALUATION METHODOLOGY

We compare the SPRINT architecture, in terms of ex-
ecution time and energy consumption, with other two
state-of-the-art chiplet-based architectures with either an

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8

TABLE 1: SPRINT Architecture Parameters

Package

Number of chiplets 64
Global buffer 128 KiB / chiplet
Inter-chiplet bandwidth 800 Gbps / chiplet
Data rate per wavelength 10 Gbps

WS Chiplet

Number of PEs 16
Chiplet-level network 2D mesh
Number of vector MACs 8
Vector MAC width 8
Weight buffer 64 KiB / PE
Ifmap buffer 6 KiB / PE
Accumulation buffer 2 KiB / PE

RS Chiplet

Number of PEs 168
Chiplet-level network X-bus / Y-bus
Weight buffer 448 B / PE
Ifmap buffer 24 B / PE
Accumulation buffer 48 B / PE

OS Chiplet

Number of PEs 64
Chiplet-level network dedicated links
Nbin (input feature buffer) 1 KiB
Nbout (output feature buffer) 1 KiB
SB (synapse buffer) 2 KiB

NLR Chiplet

Number of PEs 64
Chiplet-level network dedicated links
Nbin (input feature buffer) 16 B
Nbout (output feature buffer) 16 B
SB (synapse buffer) 256 B

TABLE 2: Photonic Parameters

Component Value Component Value

Laser source 5 dB [42] Ring drop 1 dB [43]
Coupler 1 dB [42] Ring through 0.01 dB [43]
Waveguide 1 dB/cm [42] Photodetector 0.1 dB [42]
Splitter 0.2 dB [44] Waveguide-to-receiver 0.5 dB [45]
Waveguide bend 1 dB [45] Receiver sensitivity -26 dBm [42]
Waveguide crossover 0.05 dB [45] Ring heating 0.32 mW [46]

electrical mesh [5] or a photonic crossbar [18] for inter-
chiplet communication. Meanwhile, we explore four different
chiplet-level architectures and dataflows and their impact
on system performance. Table 1 lists the key architectural
parameters of the SPRINT architecture and four different
chiplet-level architectures that we have explored. Different
chiplet-level architectures may lead to distinct bandwidth
demands for different types of data involved, as explained
in Section 4.2. For each chiplet-level architecture selected, a
specific wavelength allocation process discussed in Section
3.1.2 is performed and the resulting SPRINT architecture is
utilized for evaluation.
Simulators: In order to simulate chiplet-based architectures,
We extend the open-source Timeloop simulator to support
the non-uniform distribution of latency and bandwidth
between PEs. The execution time is derived from the compu-
tation time and the communication time, taking the overlap
between computation and communication into account.
The extended simulator tracks the number of arithmetic
operations and the number of accesses to each on-package
memory hierarchy to calculate the computation time and on-
package communication time, respectively. The calculation
takes the hierarchical network architecture (inter-chiplet and
intra-chiplet networks) into account and ensures that data
transmission does not exceed the bandwidth limit of the
corresponding link. The delay for tuning the 1×2 electrical-
optical switches and tunable splitters is set to 500 ps [37]. The
off-package communication time (access time to off-package
DRAM) is obtained from the DRAMSim2 simulator [47].
Power Model: We evaluate the power consumption of com-
putations both on the accelerator chiplets and in NAE using

TABLE 3: Convolution and Fully-connected Layers

Label Layer Name Comp. / Label Layer Name Comp. /
Comm. Comm.

VGG-16 [35] L4 res2[a-c] branch2c 469.7
L1 conv1-1 1117.4 L5 res2[b-c] branch2a 125.2
L2 conv1-2 1137.9 L6 res3a branch1 878.6
L3 conv2-1 2108.1 L7 res3a branch2a 245.5
L4 conv2-2 2109.1 L8 res3[a-d] branch2b 932.6
L5 conv3-1 2654.2 L9 res3[a-d] branch2c 617.0
L6 conv3-2 2655.3 L10 res3[b-d] branch2a 219.9
L7 conv4-1 1339.2 L11 res4a branch1 887.2
L8 conv4-2 1339.6 L12 res4a branch2a 385.6
L9 conv5-1 375.9 L13 res4[a-f] branch2b 361.2
L10 fc-4096 2.0 L14 res4[a-f] branch2c 328.4
L11 fc-4096 2.0 L15 res4[b-f] branch2a 221.9
L12 fc-4096 2.0 L16 res5a branch1 357.6

L17 res5a branch2a 283.3
ResNet-50 [32] L18 res5[a-c] branch2b 97.0

L1 conv1 5882.9 L19 res5[a-c] branch2c 95.6
L2 res2a branch2a 124.5 L20 res5[b-c] branch2a 89.4
L3 res2[a-c] branch2b 972.4 L21 fc-1000 2.0

Synopsys Design Compiler. The power consumption
of accessing on-package memory hierarchies and off-package
DRAM is obtained using CACTI 6.0 [48] and DRAMSim2,
respectively. The power consumption of on-package metallic
interconnects are obtained using DSENT [43], while the
power consumption of photonic interconnects in SPRINT
and the photonic crossbar [18] is derived from Equation (1):

Ptotal = Plaser + PTX + PRX (1)

The overall power consumption Ptotal consists of three
parts: laser power Plaser , power consumption of transmitting
circuitry PTX , and power consumption of receiving circuitry
PRX . We calculate PTX and PRX using the same parameters
as in [49] and scale the results to 28 nm technology [49], [50].
Please note that the power consumption for ring heating has
been included in both PTX and PRX . The values for PTX

and PRX are 1.22 mW and 0.92 mW , respectively when a
moderate 0.32 mW [46] ring-heating power consumption
is assumed. Laser power Plaser can be expressed by three
terms: photodetector sensitivity Prs, insertion loss Closs, and
system margin Msystem as shown in Equation (2):

Plaser = Prs + Closs +Msystem (2)

We obtain the photodetector sensitivity Prs and insertion
loss Closs from parameters listed in Table 2. The system
margin Msystem is assumed to be 4 dB [28]. From Equation
(1 and 2) and parameters from [49] and Table 2, we obtain the
energy consumption of the SPRINT photonic inter-chiplet
network to be 0.77 pJ/bit, indicating the superior energy
consumption of photonic interconnects.
Architectures for Comparison: SPRINT architecture is com-
pared with two state-of-the-art chiplet-based architectures
with electrical mesh [5] or photonic crossbar [18] for inter-
chiplet communication. These three inter-chiplet networks
are evaluated when four different chiplet-level accelerator
chiplet architectures and dataflows shown in Table 1 are
assumed. Please note that the photonic crossbar in [18]
is originally designed to connect CPU/GPU chiplets. We
replace the CPU/GPU chiplets with accelerator chiplets
for fair comparison. We largely use similar chiplet-level
configurations as in the original papers for WS chiplet [5],
RS chiplet [22], OS chiplet [23], and NLR chiplet [27]. The

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

0

0.2

0.4

0.6

0.8

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Electrical Mesh Photonic Crossbar SPRINT

0

0.2

0.4

0.6

0.8

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21

ResNet-50
E

xe
cu

ti
o

n
 T

im
e

E
xe

cu
ti

o
n

 T
im

e

VGG-16

Fig. 9: Execution time comparison across different VGG-16 and ResNet-50 layers when utilizing WS accelerator chiplets. In
each layer, all values are normalized to the electrical mesh architecture.

0

0.2

0.4

0.6

0.8

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21

0

0.2

0.4

0.6

0.8

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Electrical Mesh Photonic Crossbar SPRINT

ResNet-50

E
xe

cu
ti

o
n

 T
im

e

E
xe

cu
ti

o
n

 T
im

e

VGG-16

Fig. 10: Execution time comparison across different VGG-16 and ResNet-50 layers when utilizing RS accelerator chiplets. In
each layer, all values are normalized to the electrical mesh architecture.

0

0.2

0.4

0.6

0.8

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21

0

0.2

0.4

0.6

0.8

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Electrical Mesh Photonic Crossbar SPRINT

ResNet-50

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

E
n

er
g

y
 C

o
n

su
m

p
ti

o
nVGG-16

Fig. 11: Energy consumption comparison across different VGG-16 and ResNet-50 layers when utilizing WS accelerator
chiplets. In each layer, all values are normalized to the electrical mesh architecture.

GLB is assumed to be evenly distributed to each accelerator
chiplet when modeling electrical mesh and photonic crossbar
inter-chiplet networks. By contrast, the GLB is assumed
to be placed on a separate silicon die as shown in Fig.
5 when modeling the SPRINT architecture. To keep the
laser power in a reasonable range, the maximal number of
accelerator chiplets involved in broadcast communication is
set to 16 in SPRINT architecture. In the case when the number
of accelerator chiplets in the system exceed 16, broadcast
communication from the GLB to all accelerator chiplets is
implemented as several broadcast communications from the
GLB to a subset of accelerator chiplets attached to the same
GLB-to-Accelerator waveguide as shown in Fig. 5.

Benchmarks: We choose four CNN models, VGG-16 [35],
ResNet-50 [32], DenseNet-201 [51], and EfficientNet-B7 [52]
as the evaluation benchmarks. Table 3 lists the notations,
layer names in Caffe [53], and the number of computations
over the number of parameters (Comp./Comm.) of all 12 and
21 different layers in VGG-16 and ResNet-50, respectively.
We will present the layer-by-layer simulation results of VGG-
16 and ResNet-50 to closely examine the impact of layer
parameters on system performance and energy consumption.
For DenseNet-201 and EfficientNet-B7, we will only present
the simulation results of a complete inference pass. Please
note that we have removed redundant layers with the same
configuration parameters. For example, res2a branch1 in
ResNet-50 has been removed because it has the same config-

uration parameters as res2[a-c] branch2c (L4 in ResNet-50 in
Table 3).

6 SIMULATION RESULTS

6.1 Execution Time and Energy Consumption
Execution Time: Fig. 9 depicts the execution time comparison
of SPRINT architecture and two other architectures, namely
electrical mesh [54] and photonic crossbar, when using WS
accelerator chiplets. As compared to the electrical mesh
architecture, SPRINT achieves execution time reduction in
the range of 27% (L9:conv5-1) to 76% (L11:fc-4096)
and 28% (L11:res4a_branch1) to 66% (L21:fc-4096)
in VGG-16 and ResNet-50, respectively. SPRINT performs
extremely well in L11:fc-4096 layer in VGG-16 due to the
low Comp./Comm. value of this layer, which means that the
data is frequently moved around along the memory hierarchy.
As compared to the photonic crossbar, SPRINT achieves
execution time reduction in the range of 8% (L9:conv5-1)
to 58% (L11:fc-4096) and 1% (L11:res4a_branch1) to
50% (L21:fc-1000) in VGG-16 and ResNet-50, respectively.
The performance discrepancy of photonic crossbar and
SPRINT architecture is relatively small, as they both ex-
hibit distance-independent latency during data transmission.
SPRINT architecture outperforms photonic crossbar because
the wavelengths are allocated based on real bandwidth
demand in SPRINT architecture, but equally allocated to
chiplets in photonic crossbar.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

0

0.2

0.4

0.6

0.8

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21

0

0.2

0.4

0.6

0.8

1

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Electrical Mesh Photonic Crossbar SPRINT

ResNet-50
E

n
er

g
y

 C
o

n
su

m
p

ti
o

n

E
n

er
g

y
 C

o
n

su
m

p
ti

o
nVGG-16

Fig. 12: Energy consumption comparison across different VGG-16 and ResNet-50 layers when utilizing RS accelerator
chiplets. In each layer, all values are normalized to the electrical mesh architecture.

E
xe

cu
ti

o
n

 T
im

e

0

0.2

0.4

0.6

0.8

1

Electrical Mesh Photonic Crossbar SPRINT

0

0.2

0.4

0.6

0.8

1
E

xe
cu

ti
o

n
 T

im
e

RSWS

Fig. 13: Execution time comparison across VGG-16, ResNet-
50, DenseNet-201, and EfficientNet-B7 when utilizing WS
(left) and RS (right) accelerator chiplets. All values are
normalized to the electrical mesh architecture.

Fig. 10 shows the execution time comparison of
SPRINT architecture and two other architectures when
using RS accelerator chiplets. As compared to the elec-
trical mesh architecture, SPRINT achieves execution time
reduction in the range of 28% (L9:conv5-1) to 63%
(L2:conv1-2) and 24% (L18:res5[a-c]_branch2b) to
61% (L5:res2[b-c]_branch2a) in VGG-16 and ResNet-
50, respectively. We make two observations here. First, the
execution time reduction of SPRINT architecture over electri-
cal mesh architecture is reduced when replacing WS chiplets
with RS chiplets. This is because psums keep being streamed
out of an accelerator chiplet in the original RS dataflow
[22], possibly leading to more inter-chiplet communication.
Second, different accelerator architectures and dataflows are
suitable for layers with different configurations. As com-
pared to the photonic crossbar, SPRINT achieves execution
time reduction in the range of 14% (L9:conv5-1) to 39%
(L12:fc-4096) and 11% (L18:res5[a-c]_branch2b) to
25% (L5:res2[b-c]_branch2a) in VGG-16 and ResNet-
50, respectively. We can observe that the execution time re-
duction of SPRINT architecture over two other architectures
vary when different chiplet types or different benchmarks
are used.
Energy Consumption: Fig. 11 depicts the energy consump-
tion comparison of SPRINT architecture and two other archi-
tectures when using WS accelerator chiplets. As compared
to the electrical mesh architecture, SPRINT achieves energy
consumption reduction in the range of 19% (L11:fc-4096)
to 68% (L1:conv1-1) and 32% (L21:fc-1000) to 72%
(L4:res2[a-c]_branch2c) in VGG-16 and ResNet-50,
respectively. The reduction in energy consumption mainly
comes from the energy saving in inter-chiplet communi-
cations. As compared to the photonic crossbar, SPRINT
achieves energy consumption reduction in the range

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Electrical Mesh Photonic Crossbar SPRINT

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

RSWS

Fig. 14: Energy consumption comparison across VGG-16,
ResNet-50, DenseNet-201, and EfficientNet-B7 when utilizing
WS (left) and RS (right) accelerator chiplets. All values are
normalized to the electrical mesh architecture.

of 9% (L10:fc-4096) to 52% (L3:conv2-1) and 22%
(L21:fc-1000) to 69% (L1:conv1) in VGG-16 and ResNet-
50, respectively. As compared to photonic crossbar, the
reduction in energy consumption in SPRINT architecture
comes from fewer MRRs required and their peripheral
circuitries. Fig. 12 shows the energy consumption comparison
when RS accelerator chiplets are used. We observe similar
trend as in Fig. 11.

Since DenseNet-201 and EfficientNet-B7 includes many
layers, it’s difficult to present the per-layer execution time
and energy consumption when comparing SPRINT with
electrical mesh and photonic crossbar. We only present the
execution time and energy consumption of one complete
inference pass using four CNN models on WS and RS
accelerators in Fig. 13 and Fig. 14. We observe that though
SPRINT achieves the most reduction in execution time and
energy consumption in ResNet-50 and VGG-16, respectively,
SPRINT performs well in the more recent DenseNet-201 and
EfficientNet-B7 models as well.

6.2 SPRINT Adaptability

We study whether the SPRINT photonic inter-chiplet
network can adapt to different chiplet-level architectures
and dataflows using four different types of chiplets and
corresponding dataflows listed in Table 1. Simulation results
in Fig. 15 and Fig. 16 show that SPRINT outperforms
the other two architectures, in terms of execution time
(up to 55% reduction) and energy consumption (up to
52% reduction), when all four types of chiplets are used,
indicating the superior adaptability of SPRINT photonic inter-
chiplet network. Specifically, SPRINT architecture achieves
the most significant execution time and energy consumption
reduction when NLR chiplets are used, as the large amount
of inter-chiplet data transmission incurred in NLR dataflow

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

0

0.2

0.4

0.6

0.8

1

WS RS OS NLR G.M.

Electrical Mesh Photonic Crossbar SPRINT

0

0.2

0.4

0.6

0.8

1

WS RS OS NLR G.M.

E
xe

cu
ti

o
n

 T
im

e

E
xe

cu
ti

o
n

 T
im

e

EfficientNetResNet-50

Fig. 15: Execution time comparison across ResNet-50 (left)
and EfficientNet-B7 (right) when utilizing WS, RS, OS, and
NLR accelerator chiplets. All values are normalized to the
electrical mesh architecture.

0

0.3

0.6

0.9

1.2

1.5

8 16 32 64 128

0

0.3

0.6

0.9

1.2

1.5

8 16 32 64 128

Electrical Mesh Photonic Crossbar SPRINT

E
xe

cu
ti

o
n

 T
im

e

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

Fig. 17: Execution time and energy consumption comparison
when varying the number of accelerator chiplets.

can fully exploit the benefit of SPRINT photonic inter-chiplet
network. SPRINT architecture achieves the least execution
time and energy consumption reduction when RS chiplets are
used, as the enhanced intra-chiplet data reuse in RS dataflow
makes the impact of implementing an advanced inter-chiplet
network less significant.

6.3 SPRINT Scalability
We study the scalability of the SPRINT architecture by

varying the number of accelerator chiplets in the system from
8 to 128. Fig. 17 shows the comparisons of execution time
and energy consumption. When integrating 128 accelerator
chiplets in the system, SPRINT architecture achieves up to
78% and 83% reduction in execution time and energy con-
sumption, respectively, as compared to other architectures.
We make the following observations: (1) photonic crossbar
and SPRINT architecture perform worse than electrical
mesh when the number of chiplets is low because of the
expensive E/O and O/E signal conversions (2) photonic
crossbar and SPRINT architecture show good scalability
in terms of execution time as the system scale increases
because of the distance-independent property of photonics;
(3) the energy consumption of photonic crossbar, though
scales better than electrical mesh, is much higher than that
of SPRINT architecture due to the large number of MRRs
required; (4) we can project good scalability of SPRINT when
the number of chiplets increases beyond 128. We also study
the scalability of the SPRINT architecture by varying the
number of PEs per accelerator chiplet from 8 to 128 while
keeping the number of accelerator chiplets at 64. Fig. 18
shows that SPRINT performs better in terms of execution
time and energy consumption as the number of PEs per
accelerator chiplet increases.

6.4 Implementation Cost
To achieve equal per-chiplet bandwidth, SPRINT architec-

ture requires 14.5 K MRRs while photonic crossbar requires

0

0.2

0.4

0.6

0.8

1

WS RS OS NLR G.M.

0

0.2

0.4

0.6

0.8

1

WS RS OS NLR G.M.

Electrical Mesh Photonic Crossbar SPRINT

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

EfficientNetResNet-50

Fig. 16: Energy consumption comparison across ResNet-50
(left) and EfficientNet-B7 (right) when utilizing WS, RS, OS,
and NLR accelerator chiplets. All values are normalized the
electrical mesh architecture.

0

0.3

0.6

0.9

1.2

1.5

8 16 32 64 128

0

0.3

0.6

0.9

1.2

1.5

8 16 32 64 128

Electrical Mesh Photonic Crossbar SPRINT

E
xe

cu
ti

o
n

 T
im

e

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

Fig. 18: Execution time and energy consumption comparison
when varying the number PEs per accelerator chiplet.

over 338 K MRRs, which is 23 times larger. This is because
the number of MRRs scales linearly and quadratically with
the number of chiplets in SPRINT architecture and photonic
crossbar, respectively. [55] has reported a 6-bit DAC with 29
mW power consumption (130 nm technology). We assume
that a 6-bit DAC using 28 nm technology consumes 2.7 mW
power using the scaling factor provided in [50]. Since all the
tunable splitters attached to a chiplet share a split ratio, we
implement one 6-bit DAC in the reconfiguration controller
unit (RCU) and it incurs insignificant area and power
overhead. Fig. 19 shows that the energy consumption of
DACs is only 1.2% to 1.7% of the overall energy consumption
of the SPRINT photonic inter-chiplet network. As for timing
overhead, the switching time for a DAC is 200 ps [37] while
the tuning time for a tunable splitter is 500 ps [37]. In our
evaluation, we assume that a new split ratio can be set within
1 ns.

7 RELATED WORK

CNN Accelerator: Several CNN accelerators with different
dataflows [20], [22], [23], [26], [27], [56] have been pro-
posed in recent years. These accelerators are implemented
on monolithic chips and focus on improving data reuse
[21] assuming uniform latency and bandwidth across PEs.
However, the increasing CNN model size requires scale-up
systems like chiplet-based architectures, in which latency
between PEs in different chiplets becomes significant and
the uniform latency and bandwidth assumption no longer
holds true. Very few prior work [5], [6], [57] explores
implementing machine learning models in chiplet-based
architectures. Shao et al. [5] implement the CNN on a chiplet-
based architecture with an electrical mesh network for inter-
chiplet communication. Though this work adopts aggressive
electrical wire technology to implement the inter-chiplet
network, it still becomes the performance bottleneck as
the system scales up, indicating the scalability limitation
of electrical networks at the chiplet scale. Hwang et al.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12

26.3%

18.2%
27.1%

27.1%

1.2%

WS

36.8%

9.1%

14.5%

38.0%

1.7%

Laser

Transmitter

Receiver

Ring Heating

DACRS

Fig. 19: Energy consumption breakdown of SPRINT photonic
network when utilizing WS and RS accelerator chiplets.

[57] implement a recommendation model on a chiplet-
based architecture. This work focuses on the accelerator
design and the interconnection network between chiplets
is an electrical bus. Ascia et al. [6] propose to replace the
electrical wires with wireless channels to implement the
inter-chiplet network for CNN inference. Though exhibiting
higher scalability as compared to the electrical networks, the
cost of providing sufficient bandwidth is significant. Our
work explores scaling up the chiplet-based architecture using
photonic interconnects for large CNN models, as photonic
interconnects are expected to achieve higher scalability and
bandwidth density.
Photonic Interconnects in Chiplet-based Architectures:
Implementing photonic interconnects on chip has been
well studied [38], [58], [59], [60], [61], [62]. Prior work
[12], [14], [15], [16], [17], [63], [64], [65] has explored to
implement photonic interconnects on silicon interposer in
chiplet-based architectures. Demir et al. [14] propose to
construct a many-core ”virtual chip” by connecting mul-
tiple smaller chiplets through a photonic crossbar. Photonic
crossbars are also used to connect the chiplets in [16],
[18]. Grani et al. [15] utilize arrayed waveguide grating
router (AWGR) photonic interconnects implemented on the
silicon interposer to realize a 16×16 photonic network-on-
chip (NoC). Prior work leverages the distance-independent
feature of photonics in large-scale chiplet-based architectures.
However, the implementation cost is often high as all-to-
all communication is assumed and bandwidth resources
are uniformly distributed. Our work explores to exploit the
specific communication patterns in CNN inference to further
improve the performance and reduce the implementation
cost of the inter-chiplet interconnects.

8 CONCLUSION

In this paper, we present a chiplet-based CNN accelerator
named SPRINT. The unique features of SPRINT include (1)
a novel photonic inter-chiplet network that is optimized to
adapt to specific communication patterns in CNN inference
through wavelength allocation and waveguide reconfigu-
ration, and (2) a novel optically-enhanced CNN dataflow
that exploits the inherent broadcasting and multicasting
capabilities of photonics to efficiently support the prevalent
broadcasting communication in CNN inference. Simulation
studies using multiple CNN models show that SPRINT
provides significant reduction in execution time and energy
consumption, as well as superior scalability, as compared to
other state-of-the-art chiplet-based architectures with metallic
or photonic inter-chiplet interconnects.

9 ACKNOWLEDGMENTS

This research was partially supported by National Science
Foundation grants CCF-1702980, CCF-1812495, CCF-1901165,
CCF-1953980, CCF-1513606, CCF-1703013, and CCF-1901192.
We sincerely thank the anonymous reviewers for the excellent
feedback.

REFERENCES

[1] R. Mayer and H. A. Jacobsen. Scalable Deep Learning on Dis-
tributed Infrastructures: Challenges, Techniques, and Tools. ACM
Computing Survey, 53(1):1–37, 2020.

[2] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient Processing of
Deep Neural Networks: A Tutorial and Survey. Proceedings of the
IEEE, 105(12):2295–2329, 2017.

[3] B. Klenk and L. Dennison. Why Data Science and Machine Learning
Need Silicon Photonics. In Optical Fiber Communication Conference,
pages M4F–6, 2020.

[4] S. M. Nabavinejad, M. Baharloo, K. Chen, M. Palesi, T. Kogel, and
M. Ebrahimi. An Overview of Efficient Interconnection Networks
for Deep Neural Network Accelerators. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 10(3):268–282, 2020.

[5] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler.
Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-
Based Architecture. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), page 14–27, 2019.

[6] G. Ascia, V. Catania, A. Mineo, S. Monteleone, M. Palesi, and
D. Patti. Improving Inference Latency and Energy of DNNs through
Wireless Enabled Multi-Chip-Module-Based Architectures and
Model Parameters Compression. In Proceedings of the IEEE/ACM
International Symposium on Networks-on-Chip (NOCS), pages 1–6,
2020.

[7] A. Kannan, N. E. Jerger, and G. H. Loh. Enabling Interposer-
Based Disintegration of Multi-Core Processors. In Proceedings of the
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 546–558, 2015.

[8] H. Zheng, K. Wang, and A. Louri. A Versatile and Flexible Chiplet-
Based System Design for Heterogeneous Manycore Architectures.
In Proceedings of the ACM/IEEE Design Automation Conference (DAC),
pages 1–6, 2020.

[9] D. A. B. Miller. Device Requirements for Optical Interconnects to
Silicon Chips. Proceedings of the IEEE, 97(7):1166–1185, 2009.

[10] Y. Li, A. Louri, and A. Karanth. Scaling Deep-Learning Inference
with Chiplet-Based Architecture and Photonic Interconnects. In
Proceedings of the ACM/IEEE Design Automation Conference (DAC),
pages 1–6, 2021.

[11] S. Van Winkle, A. Karanth, R. Bunescu, and A. Louri. Extending the
Power-Efficiency and Performance of Photonic Interconnects for
Heterogeneous Multicores with Machine Learning. In Proceedings
of the IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 480–491, 2018.

[12] A. Narayan, Y. Thonnart, P. Vivet, and A. K. Coskun. PROWAVES:
Proactive Runtime Wavelength Selection for Energy-Efficient Pho-
tonic NoCs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pages 1–14, 2020.

[13] L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, and D. Englund.
Freely Scalable and Reconfigurable Optical Hardware for Deep
Learning. Scientific Reports, 11(1):1–12, 2021.

[14] Y. Demir, Y. Pan, S. Song, N. Hardavellas, J. Kim, and G. Memik.
Galaxy: A High-Performance Energy-Efficient Multi-Chip Archi-
tecture using Photonic Interconnects. In Proceedings of the ACM
International Conference on Supercomputing (ICS), page 303–312, 2014.

[15] P. Grani, R. Proietti, V. Akella, and S. J. Ben Yoo. Design and
Evaluation of AWGR-Based Photonic NoC Architectures for 2.5D
Integrated High Performance Computing Systems. In Proceedings
of the IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 289–300, 2017.

[16] A. Narayan, Y. Thonnart, P. Vivet, C. F. Tortolero, and A. K. Coskun.
WAVES: Wavelength Selection for Power-Efficient 2.5D-Integrated
Photonic NoCs. In Proceedings of the Design, Automation and Test in
Europe Conference (DATE), pages 516–521, 2019.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

13

[17] P. Fotouhi, S. Werner, J. Lowe-Power, and S. J. Ben Yoo. Enabling
Scalable Chiplet-Based Uniform Memory Architectures with Silicon
Photonics. In Proceedings of the International Symposium on Memory
Systems (MEMSYS), page 222–334, 2019.

[18] Y. Thonnart, S. Bernabé, J. Charbonnier, C. Bernard, D. Coriat,
C. Fuguet, P. Tissier, B. Charbonnier, S. Malhouitre, D. Saint-
Patrice, M. Assous, A. Narayan, A. Coskun, D. Dutoit, and
P. Vivet. POPSTAR: a Robust Modular Optical NoC Architecture for
Chiplet-Based 3D Integrated Systems. In Porceedings of the Design,
Automation and Test in Europe Conference (DATE), pages 1456–1461,
2020.

[19] A. Narayan, Y. Thonnart, P. Vivet, A. Joshi, and A. K. Coskun.
System-Level Evaluation of Chip-Scale Silicon Photonic Networks
for Emerging Data-Intensive Applications. In Proceedings of the
Design, Automation and Test in Europe Conference (DATE), pages
1444–1449, 2020.

[20] H. Kwon, A. Samajdar, and T. Krishna. MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects. In Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), page 461–475, 2018.

[21] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna. Understanding Reuse, Performance, and Hardware
Cost of DNN Dataflow: A Data-Centric Approach. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO),
page 754–768, 2019.

[22] Y. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks. In
Proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), page 367–379, 2016.

[23] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam. ShiDianNao: Shifting Vision Processing Closer to
the Sensor. In Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), page 92–104, 2015.

[24] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi. A
Dynamically Configurable Coprocessor for Convolutional Neural
Networks. In Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), page 247–257, 2010.

[25] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini. Origami: A Convolutional Network Accelerator. In
Proceedings of the ACM Great Lakes Symposium on VLSI (GLVLSI),
page 199–204, 2015.

[26] H. J. Yoo, S. Park, K. Bong, D. Shin, J. Lee, and S. Choi. A 1.93
TOPS/W Scalable Deep Learning/Inference Processor with Tetra-
Parallel MIMD Architecture for Big Data Applications. In IEEE
International Solid-State Circuits Conference (ISSCC), pages 80–81,
2015.

[27] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam.
DianNao: A Small-Footprint High-Throughput Accelerator for
Ubiquitous Machine-Learning. In Proceedings of the ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), page 269–284, 2014.

[28] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau,
P. Koka, G. Li, I. Shubin, and J. E. Cunningham. Computer Systems
based on Silicon Photonic Interconnects. Proceedings of the IEEE,
97(7):1337–1361, 2009.

[29] M. Petracca, B. G. Lee, K. Bergman, and L. P. Carloni. Design
Exploration of Optical Interconnection Networks for Chip Multi-
processors. In IEEE Symposium on High Performance Interconnects,
pages 31–40, 2008.

[30] R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal,
M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S.
Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu. A Nanophotonic
Interconnect for High-Performance Many-Core Computation. In
IEEE Symposium on High Performance Interconnects, pages 182–189,
2008.

[31] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi,
M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H.
Ahn. Corona: System Implications of Emerging Nanophotonic
Technology. In Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA), pages 153–164, 2008.

[32] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going Deeper with

Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2818–2826, 2016.

[35] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. arXiv preprint
arXiv:1409.1556, pages 1–14, 2014.

[36] A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan,
M. Lipson, and K. Bergman. Broadband Silicon Photonic Electroop-
tic Switch for Photonic Interconnection Networks. IEEE Photonics
Technology Letters (PTL), 23(8):504–506, 2011.

[37] E. Peter, A. Thomas, A. Dhawan, and S. R. Sarangi. Active Micror-
ing based Tunable Optical Power Splitters. Optics Communications,
359:311–315, 2016.

[38] J. Bashir, E. Peter, and S. R. Sarangi. A Survey of On-Chip Optical
Interconnects. ACM Computing Survey, 51(6):1–34, 2019.

[39] X. Hu, D. Stow, and Y. Xie. Die Stacking Is Happening. IEEE Micro,
38(1):22–28, 2018.

[40] H. Venghaus. Wavelength Filters in Fibre Optics. Springer, 2006.
[41] K. Bergman, L. P. Carloni, A.r Biberman, J. Chan, and G. Hendry.

Photonic Network-on-Chip Design. Springer, 2014.
[42] R. Morris, A. Karanth, and A. Louri. Dynamic Reconfiguration

of 3D Photonic Networks-on-Chip for Maximizing Performance
and Improving Fault Tolerance. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 282–
293, 2012.

[43] C. Sun, C. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S.
Peh, and V. Stojanovic. DSENT - A Tool Connecting Emerging
Photonics with Electronics for Opto-Electronic Networks-on-Chip
Modeling. In Proceedings of the IEEE/ACM International Symposium
on Networks-on-Chip (NOCS), pages 201–210, 2012.

[44] S. Werner, J. Navaridas, and M. Luján. Designing Low-Power, Low-
Latency Networks-on-Chip by Optimally Combining Electrical and
Optical Links. In Proceedings of the IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 265–276,
2017.

[45] R. Morris and A. Karanth. Power-Efficient and High-Performance
Multi-Level Hybrid Nanophotonic Interconnect for Multicores. In
Proceedings of the IEEE/ACM International Symposium on Networks-
on-Chip (NOCS), pages 207–214, 2010.

[46] A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic,
and V. Stojanovic. Silicon-Photonic Clos Networks for Global On-
Chip Communication. In Proceedings of the IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), pages 124–133, 2009.

[47] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle
Accurate Memory System Simulator. IEEE Computer Architecture
Letters (CAL), 10(1):16–19, 2011.

[48] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI
6.0: A Tool to Model Large Caches. HP laboratories, 27:1–24, 2009.

[49] R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan.
Efficiency Optimization of Silicon Photonic Links in 65-nm CMOS
and 28-nm FDSOI Technology Nodes. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 24(12):3450–3459, 2016.

[50] A. Stillmaker and B. Baas. Scaling Equations for the Accurate
Prediction of CMOS Device Performance from 180 nm to 7 nm.
Integration, 58:74–81, 2017.

[51] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely
Connected Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
4700–4708, 2017.

[52] M. Tan and Q. V. Le. Efficientnet: Rethinking Model Scaling for
Convolutional Neural Networks. In International Conference on
Machine Learning (ICML), pages 6105–6114, 2019.

[53] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional Architecture
for Fast Feature Embedding. In Proceedings of the ACM International
Conference on Multimedia, page 675–678, 2014.

[54] Y. Li and A. Louri. ALPHA: A Learning-Enabled High-Performance
Network-on-Chip Router Design for Heterogeneous Manycore
Architectures. IEEE Transactions on Sustainable Computing, 6(2):274–
288, 2021.

[55] X. Wu, P. Palmers, and M. S. J. Steyaert. A 130 nm CMOS 6-Bit
Full Nyquist 3 GS/s DAC. IEEE Journal of Solid-State Circuits,
43(11):2396–2403, 2008.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

14

[56] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam. DaDianNao: A Machine-Learning
Supercomputer. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), page 609–622, 2014.

[57] R. Hwang, T. Kim, Y. Kwon, and M. Rhu. Centaur: A Chiplet-Based,
Hybrid Sparse-Dense Accelerator for Personalized Recommenda-
tions. In Proceedings of the ACM/IEEE International Symposium on
Computer Architecture (ISCA), page 968–981, 2020.

[58] R. R. Tummala. Moore’s Law Meets its Match (System-on-Package).
IEEE Spectrum, 43(6):44–49, 2006.

[59] S. Werner, J. Navaridas, and M. Luján. A Survey on Optical
Network-on-Chip Architectures. ACM Computing Survey, 50(6):1–
37, 2017.

[60] T. Alexoudi, N. Terzenidis, S. Pitris, M. Moralis-Pegios, P. Maniotis,
C. Vagionas, C. Mitsolidou, G. Mourgias-Alexandris, G. T. Kanellos,
A. Miliou, K. Vyrsokinos, and N. Pleros. Optics in Computing:
From Photonic Network-on-Chip to Chip-to-Chip Interconnects
and Disintegrated Architectures. Journal of Lightwave Technology,
37(2):363–379, 2019.

[61] Y. Demir and N. Hardavellas. SLaC: Stage Laser Control for a
Flattened Butterfly Network. In Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture (HPCA),
pages 321–332, 2016.

[62] M. Wade, E. Anderson, S. Ardalan, P. Bhargava, S. Buchbinder, M. L.
Davenport, J. Fini, H. Lu, C. Li, R. Meade, C. Ramamurthy, M. Rust,
F. Sedgwick, V. Stojanovic, D. Van Orden, C. Zhang, C. Sun, S. Y.
Shumarayev, C. O’Keeffe, T. T. Hoang, D. Kehlet, R. V. Mahajan,
M. T. Guzy, A. Chan, and T. Tran. TeraPHY: A Chiplet Technology
for Low-Power, High-Bandwidth In-Package Optical I/O. IEEE
Micro, 40(2):63–71, 2020.

[63] Y. Li, A. Louri, and A. Karanth. SPACX: Silicon Photonics-Based
Scalable Chiplet Accelerator for DNN Inference. In Proceedings
of the IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 1–13, 2022.

[64] A. Coskun, F. Eris, A. Joshi, A. B. Kahng, Y. Ma, A. Narayan, and
V. Srinivas. Cross-Layer Co-Optimization of Network Design and
Chiplet Placement in 2.5-D Systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 39(12):5183–5196,
2020.

[65] Z. Wang, Z. Wang, J. Xu, Y. S. Chang, J. Feng, X. Chen, S. Chen,
and J. Zhang. CAMON: Low-Cost Silicon Photonic Chiplet for
Manycore Processors. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(9):1820–1833, 2020.

Yuan Li received the BS degree in physics from
the University of Science and Technology of
China in 2010, and the MS degree in microelec-
tronics from the University of Newcastle upon
Tyne in 2011. He is currently working toward
the PhD degree in computer engineering at the
George Washington University. His research in-
terests include machine learning architectures,
accelerator-rich heterogeneous systems, and
emerging interconnect and memory technologies.
He is a student member of the IEEE.

Ahmed Louri is the David and Marilyn Karlgaard
Endowed Chair Professor of Electrical and Com-
puter Engineering at the George Washington
University, which he joined in August 2015. He
is also the director of the High Performance
Computing Architectures and Technologies Lab-
oratory. Dr. Louri received the Ph.D. degree in
Computer Engineering from the University of
Southern California, Los Angeles, California in
1988. From 1988 to 2015, he was a professor
of Electrical and Computer Engineering at the

University of Arizona, and during that time, he served six years (2000
to 2006) as the Chair of the Computer Engineering Program. From
2010 to 2013, Dr. Louri served as a program director in the National
Science Foundation’s (NSF) Directorate for Computer and Information
Science and Engineering. He directed the core computer architecture
program and was on the management team of several cross-cutting
programs. Dr. Louri conducts research in the broad area of computer
architecture and parallel computing, with emphasis on interconnection
networks, optical interconnects for scalable parallel computing systems,
reconfigurable computing systems, and power-efficient and reliable
Network-on-Chips (NoCs) for multicore architectures. Recently he has
been concentrating on: energy-efficient, reliable, and high-performance
many-core architectures; accelerator-rich reconfigurable heterogeneous
architectures; machine learning techniques for efficient computing,
memory, and interconnect systems; emerging interconnect technologies
(photonic, wireless, RF, hybrid) for NoCs; future parallel computing
models and architectures (including convolutional neural networks, deep
neural networks, and approximate computing); and cloud-computing and
data centers. He is the recipient of the 2020 IEEE Computer Society
Edward J. McCluskey Technical Achievement Award, “for pioneering
contributions to the solution of on-chip and off-chip communication
problems for parallel computing and manycore architectures.” Dr. Louri
is a Fellow of the IEEE, and he is currently the Editor-in-Chief of the
IEEE Transactions on Computers. More information can be found at
https://hpcat.seas.gwu.edu/Director.html.

Avinash Karanth received the BE degree in elec-
tronics and communications in February 2000
from the Manipal Institute of Technology, Manga-
lore University, and the MS and PhD degrees in
the Electrical and Computer Engineering Depart-
ment from The University of Arizona in May 2003
and August 2006, respectively. Presently, he is
the Joseph Jachinowski Professor in the School
of Electrical Engineering and Computer Science
at Ohio University in Athens, Ohio. Dr. Karanth
directs the Technologies for Emerging Computer

Architecture Lab (TEAL) at Ohio University. His research interests include
computer architecture, optical interconnects, Network-on-Chips (NoCs)
and emerging technologies such as nanophotonics, 3D, and wireless
interconnects. He is the recipient of the NSF CAREER Award in 2011,
the Presidential Research Scholar Award in 2017, the Best Paper Award
at the ICCD 2013 conference and his papers have been nominated for
Best Paper at the IEEE Symposium on Network-on-Chips (NoCs) in May
2010 and the IEEE Asia & South Pacific Design Automation Conference
(ASP-DAC) in January 2009. He is a senior member of the IEEE and
member of ACM.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3139015

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://hpcat.seas.gwu.edu/Director.html

	Introduction
	Background and Motivation
	Communication in CNN Inference
	Computation of a Convolution Layer
	Communication Patterns

	Photonic Interconnects
	Photonic Interconnects
	Photonic Inter-chiplet Networks

	SPRINT Architecture
	Photonic Inter-chiplet Network
	Components for Network Reconfiguration
	Photonic Inter-chiplet Network
	Physical Implementation

	Chiplets in SPRINT Architecture

	SPRINT Dataflow Customization
	Package-level Data Partition
	Chiplet-level Dataflow
	Accelerator Chiplet with Weight-stationary Dataflow
	Accelerator Chiplet with Row Stationary Dataflow

	Evaluation Methodology
	Simulation Results
	Execution Time and Energy Consumption
	SPRINT Adaptability
	SPRINT Scalability
	Implementation Cost

	Related Work
	Conclusion
	Acknowledgments
	References
	Biographies
	Yuan Li
	Ahmed Louri
	Avinash Karanth

