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A High-Performance and Energy-Efficient
Photonic Architecture for Multi-DNN Acceleration
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Abstract—Large-scale deep neural network (DNN) accelerators are poised to facilitate the concurrent processing of diverse DNNs,
imposing demanding challenges on the interconnection fabric. These challenges encompass overcoming performance degradation and
energy increase associated with system scaling while also necessitating flexibility to support dynamic partitioning and adaptable
organization of compute resources. Nevertheless, conventional metallic-based interconnects frequently confront inherent limitations in
scalability and flexibility. In this paper, we leverage silicon photonic interconnects and adopt an algorithm-architecture co-design approach
to develop MDA, a DNN accelerator meticulously crafted to empower high-performance and energy-efficient concurrent processing of
diverse DNNs. Specifically, MDA consists of three novel components: (1) a resource allocation algorithm that assigns compute resources
to concurrent DNNs based on their computational demands and priorities; (2) a dataflow selection algorithm that determines off-chip and
on-chip dataflows for each DNN, with the objectives of minimizing off-chip and on-chip memory accesses, respectively; (3) a flexible
silicon photonic network that can be dynamically segmented into sub-networks, each interconnecting the assigned compute resources of
a certain DNN while adapting to the communication patterns dictated by the selected on-chip dataflow. Simulation results show that the
proposed MDA accelerator outperforms other state-of-the-art multi-DNN accelerators, including PREMA, AI-MT, Planaria, and HDA. MDA
accelerator achieves a speedup of 3.6, accompanied by substantial improvements of 7.3×, 12.7×, and 9.2× in energy efficiency,
service-level agreement (SLA) satisfaction rate, and fairness, respectively.

Index Terms—Deep neural network, Accelerator, Dataflow, Silicon photonics

✦

1 INTRODUCTION

THE proliferation of deep neural network (DNN) acceler-
ators within the realm of cloud computing has emerged

as a prominent trend [1], [2], [3], [4] driven by an overarching
goal of facilitating concurrent processing of various DNNs. It
imposes stringent demand on the underlying interconnection
fabric [5], necessitating not only the support for addressing
challenges in latency, bandwidth, and energy stemming from
system scaling but also the provision of connection flexibility
required for active partitioning and adaptable organization
of compute resources. However, conventional metallic-based
interconnects confront increasingly pronounced scaling limi-
tations [6] as well as inherent rigidity [7], [8], [9], rendering
them inadequate to facilitate high-performance and energy-
efficient concurrent processing of diverse DNNs. For instance,
some previous accelerators [10], [11], [12], [13] facilitate the
concurrent processing of multiple DNNs but are confined to
a fixed dataflow [4]. Conversely, other accelerators [14], [15],
[16] accommodate multiple dataflows but are only capable
of concurrently processing a limited number of DNNs.

Silicon photonic interconnects [17], [18] offer several well-
established advantages when compared to the metallic-based
counterparts, such as distance-independent latency [17], high
bandwidth density [18], and high energy efficiency, making
them a compelling alternative to architect the interconnection
fabric for large-scale DNN accelerators [7], [19]. Moreover,
due to their unique characteristics in modulation, trans-
mission, multiplexing, and filtering [17], silicon photonic
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interconnects exhibit remarkable inherent flexibility which
enables efficient support for dynamic resource partitioning
to minimize the communication interference between con-
currently processed DNNs, as well as adaptable resource
organization to accommodate the diversity in DNN charac-
teristics and dataflows.

We introduce the MDA accelerator in this paper, which is
specifically designed to enhance the performance and energy
efficiency of Multi-DNN Acceleration. MDA is optimized via
an algorithm-architecture co-design approach and incorpo-
rates three components: (1) a resource allocation algorithm
that assigns compute resources to concurrent DNNs based on
their computational demands and priorities; (2) a dataflow
selection algorithm that sequentially determines off-chip and
on-chip dataflows for a DNN to minimize the incurred off-
chip and on-chip memory accesses, respectively; (3) a flexible
silicon photonic network that can be dynamically segmented
into sub-networks, each interconnecting compute resources
assigned to a certain DNN while adapting to communication
patterns dictated by the selected on-chip dataflow. Simulation
results show that the proposed MDA accelerator outperforms
other state-of-the-art multi-DNN accelerators [10], [11], [12],
[15], achieving evident speedup and improvements in energy
efficiency, service-level agreement (SLA) satisfaction rate, and
fairness. The significant contributions of this paper include:

• Resource Allocation Algorithm: The proposed MDA resource
allocation algorithm assigns compute resources to concur-
rently processed DNNs by considering two pivotal factors:
the remaining multiple-accumulate (MAC) operations and
the time left until the predefined completion deadline. The
factors encapsulate the computational demand and priority
of a DNN. The output of this resource allocation algorithm
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Fig. 1: Computation in ⟨K : E : F : C : R : S⟩ convolutional
layer and a processing tile ⟨Tk : Te : Tf : Tc : R : S⟩.

serves as input for the next dataflow selection algorithm.
• Dataflow Selection Algorithm: We undertake an exhaustive

search for dataflow design space and establish quantitative
models to precisely quantify the relation between dataflow
configuration and memory access count both in the off-chip
and on-chip cases. The proposed MDA dataflow selection
algorithm harnesses these models in conjunction with the
output of the MDA resource allocation algorithm and the
parameters specific to a given DNN, to ascertain both off-
chip and on-chip dataflows that result in minimum off-chip
and on-chip memory accesses, respectively. Moreover, the
exhaustive search yields a set of communication patterns
that must be accommodated by the flexible silicon photonic
network.

• Flexible Silicon Photonic Network: We design a novel versatile
silicon photonic network that can be actively segmented
to sub-networks, each interconnecting compute resources
assigned to a certain DNN to minimize the communication
interference while being adaptively configured into a set of
working modes to adequately facilitate the communication
patterns dictated by the selected on-chip dataflow.

2 BACKGROUND

2.1 DNN Computation
The computation involved in a typical convolutional layer

of a DNN is described in Fig. 1 and represented as a nested
loop over weight kernels, input features, and output features
in Algorithm 1. This nested loop includes iterations on six
dimensions, namely the number of input feature channels ⟨c⟩,
the number of output feature channels ⟨k⟩, the height ⟨r⟩ and
width ⟨s⟩ of weight kernels, and the height ⟨e⟩ and width ⟨f⟩
of output feature channels. It should be noted that the height
and width of input feature channels are not independent and
can be derived from other dimensions. With the assumption
of stride Str = 1 and batch size N = 1, we can identify the
reuse opportunities of input features along the ⟨k⟩ dimension,
as well as the reuse opportunities of weights or input features
along both ⟨e⟩ and ⟨f⟩ dimensions, following the taxonomy
outlined in [20]. We focus on accelerating the convolutional
layers, the fully-connected layers, as well as the depth-wise
separable convolutional layers as they constitute a significant
fraction of all layers in typical DNNs [21], [22].

2.2 Silicon Photonic Interconnects
We demonstrate the architecture of a typical simple silicon

photonic interconnect in Fig. 2. Light in a certain wavelength
λ0 is coupled from an off-chip laser to an on-chip waveguide
and traverses from a transmitter to a receiver. On transmitter

Algorithm 1: Computation of a Convolutional Layer

1 for ( k = 0; k < K ; k += 1 )

2 for ( e = 0; e < E; e += 1 )

3 for ( f = 0; f < F ; f += 1 )

4 for ( c = 0; c < C; c += 1 )

5 for ( r = 0; r < R; r += 1 )

6 for ( s = 0; s < S; s += 1 )

7 O[k e f ] += I[r + e− 1 s+ f − 1 c]×W [k r s c]

end, electrical data is serialized and utilized as a modulation
signal to modulate the microring resonator (MRR) labeled as
MRR0. On receiver end, the MRR labeled as MRR1 collects
the light in wavelength λ0 and forwards it to a photodetector
to generate a photocurrent signal, which is then amplified by
a transimpedance amplifier (TIA) and sent to a comparator to
retrieve the original electrical data. A communication channel
is established when MRR0 and MRR1 in this example share
a resonant wavelength λ0. A resistive heater controlled by a
thermal tuning module is attached to every MRR to mitigate
both thermal and process variations. The latency and power
consumption of this communication channel depend on the
transmitter and receiver, and are largely independent of the
physical distance between them [17]. The bandwidth density
of this communication channel can be easily scaled by adding
additional transmitters and receivers with distinct resonant
wavelengths other than λ0, known as wavelength-division
multiplexing (WDM). When adding additional receivers that
possess λ0 as resonant wavelength, a single-write-multiple-
read (SWMR) multicast channel is created. It achieves higher
power efficiency compared to the original unicast channel by
sharing the transmitter at the cost of a moderate increase in
laser power. The proposed MDA accelerator leverages the
advantages of silicon photonic interconnects to overcome the
challenges stemming from system scaling.

The resonant wavelength of an MRR could be thermally
tuned [23], [24]. Recent work has reported tuning latency and
power as low as 50 ns and 2.06 nm/mW [24], respectively.
The split ratio (ratio of light observed in drop and through
ports shown in Fig. 2) of an MRR could be electrically tuned
[25], [26]. Recent work has reported tuning latency as low as
500 ps [25]. The flexible silicon photonic network inside the
proposed MDA accelerator exploits thermal and electrical
tuning approaches to construct a variety of working modes
to adapt to different communication patterns.

3 MDA RESOURCE ALLOCATION

Algorithm 2 describes how the proposed MDA resource
allocation and dataflow selection algorithms are sequentially
performed. TheTASKUPDATE (Task, alloc) function oversees
the working status of the MDA accelerator by periodically
updating Task. The MDA resource allocation algorithm is
activated by setting alloc upon arrival of new or completion
of existing DNNs. In the case where a new DNN arrives, its
number of MAC operations Woverall, predefined completion
deadline Ttarget, estimated execution time when executed
on the MDA accelerator alone without interruptions Tisolate,
and parameters from each layer are extracted from the offline
information, before alloc is set. Similarly, in the case where an
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Fig. 2: (a) A silicon photonic interconnect which connects a
transmitter and a receiver and (b) an MRR with a resonant
wavelength of λ0 and a split ratio of α/ (1− α).

existing DNN is completed, the corresponding entry in Task
is deleted while its shares of compute resources M i and on-
chip memory Oi are released before alloc is set. In either case
above, the output of the previous invocation of the MDA
resource allocation algorithm no longer reflects the latest
computational demands and priorities of the concurrently
processed DNNs, calling for a new invocation of the MDA
resource allocation algorithm. During operation without the
arrival of new or completion of existing DNNs, the estimated
remaining execution time Tremain and the remaining time
until the predefined completion deadline Tdeadline, which
are defined in Equation (1) and (2), respectively, are regularly
updated for each concurrently processed DNN. Please
note that Wremain and Tcurrent represent the number of
remaining MAC operations and current time, respectively.

T i
remain = T i

isolate ×W i
remain/W

i
overall (1)

T i
deadline = T i

target − Tcurrent (2)

The MDA resource allocation algorithm assigns compute
resources to concurrently processed DNNs following Equa-
tion (3). M and M i represent the overall compute resources
and the share assigned to a DNN, respectively. M i is linearly
proportional to the computational demand represented by
Tremain and exponentially proportional to priority estimated
by Tdeadline. Such exponential proportion significantly favors
DNNs with high priorities (small Tdeadline values), promot-
ing equal progress of concurrently processed DNNs while
ensuring adherence to the predefined completion deadlines.
Moreover, it helps assign proper compute resources to DNNs
that have missed their predefined completion deadlines (with
negative Tdeadline values). The share of on-chip memory Oi

is proportionally assigned based on M i. The proposed MDA
dataflow selection algorithm is performed upon completion
of the MDA resource allocation algorithm, as the updated
assignment of compute resources and on-chip memory can
potentially make current dataflow decisions non-optimal.

M i = M × T i
remain × e−T i

deadline∑
T i
remain × e−T i

deadline

(3)

4 MDA DATAFLOW SELECTION

We take a two-step approach to sequentially select the off-
chip and on-chip dataflows for each concurrently processed
DNN, with the objectives of minimizing off-chip and on-chip
memory accesses, respectively. Please note that this approach

Algorithm 2: MDA Algorithms

1 function MDAALGORITHMS (Task) ▷ Task: multiplexed DNNs

2 for time← [ 0,∞ ) do ▷ Update the progress of each DNN

3 TASKUPDATE (Task, alloc) ▷ alloc: set for new/completed DNN

4 if alloc = true then

5 TASKALLOCATION (Task) ▷ Resource allocation

6 TASKDATAFLOW (Task) ▷ Dataflow selection

7 alloc = false ▷ Clear alloc

8 end if

9 time+=1

10 end for

11 end function

does not necessarily yield optimal dataflow decisions as off-
chip and on-chip dataflows will interact with each other, and
there is no clear definition of the global optimization target.
The proposed two-step approach may potentially lead to sub-
optimal dataflow decisions, however, significantly reduces
the search space.

4.1 Off-Chip Dataflow Selection

A DNN accelerator typically consists of off-chip memory
(e.g., DRAM), on-chip memory (e.g., global buffer (GLB)),
and processing elements (PEs) [27]. Fig. 1 illustrates how
a convolutional layer ⟨K : E : F : C : R : S⟩ can be parti-
tioned into tiles with tile size ⟨Tk : Te : Tf : Tc : R : S⟩. The
tiling process naturally divides the overall dataflow into two
parts: off-chip dataflow which orchestrates data movements
between off-chip memory and on-chip memory, and on-chip
dataflow which orchestrates data movements between on-
chip memory and numerous PEs. Please note that we assume
a unified on-chip memory shared by all PEs as in [27] in this
work. The off-chip dataflow optimization goal is to minimize
the off-chip memory accesses as they are notably more costly
than the actual MAC operations [20].

The input of the off-chip dataflow selection algorithm is
the share of on-chip memory for a DNN Oi and the param-
eters of a certain layer in that DNN ⟨K : E : F : C : R : S⟩.
The output of the off-chip dataflow selection algorithm is
the proper tile size represented by ⟨Tk : Te : Tf : Tc : R : S⟩
and the tile processing order. Note that we only perform
tiling on ⟨k⟩, ⟨e⟩, ⟨f⟩, and ⟨c⟩ dimensions to avoid breaking
individual weight kernel input channels. A tile with a tile size
of ⟨Tk : Te : Tf : Tc : R : S⟩ needs to store Tk × Tc ×R× S
weights, Tc × (R + Te − 1) × (S + Tf − 1) input features,
and Tk×Te×Tf partial sums in the on-chip memory, which
must be fully accommodated by the assigned share Oi. For
a given tile size, three processing orders that maximize the
reuse of partial sums, input features, and weights could be
derived by processing the ⟨c⟩, ⟨k⟩, and ⟨e f⟩ dimensions in
the innermost loops. Algorithm 3 shows an example of an
off-chip dataflow that maximizes the reuse of partial sums.

We conduct an exhaustive search for the off-chip memory
access count when varying the tile size and tile processing
order and list the quantitative model in Table 1. The overall
off-chip memory access count values for three different tile
processing orders Vweight, Vinput, and Voutput for a given tile
size ⟨Tk : Te : Tf : Tc : R : S⟩ can be obtained by adding up
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TABLE 1: Off-Chip Section Dataflow Exploration

Reuse Data On-Chip Memory Share Off-Chip Memory Access

Weight
W Tk × Tc ×R× S K × C ×R× S
I Tc × (R+ Te − 1)× (S + Tf − 1) K × C × E × F × (R+ Te − 1)× (S + Tf − 1)/Tk × Te × Tf

P Tk × Te × Tf 2×K × C × E × F/Tc

Input
W Tk × Tc ×R× S K × C × E × F ×R× S/Te × Tf

I Tc × (R+ Te − 1)× (S + Tf − 1) C × E × F × (R+ Te − 1)× (S + Tf − 1)/Te × Tf

P Tk × Te × Tf 2×K × C × E × F/Tc

Output
W Tk × Tc ×R× S K × C × E × F ×R× S/Te × Tf

I Tc × (R+ Te − 1)× (S + Tf − 1) K × C × E × F × (R+ Te − 1)× (S + Tf − 1)/Tk × Te × Tf

P Tk × Te × Tf K × E × F

Algorithm 3: Off-Chip Section Dataflow Example

1 for ( tk = 0; tk < K; tk += Tk ) ▷ Off-chip section

2 for ( te = 0; te < E; te += Te )

3 for ( tf = 0; tf < F ; tf += Tf )

4 for ( tc = 0; tc < C; tc += Tc )

5 for ( k = tk; k < min ( K, tk + Tk ); k += 1 ) ▷ On-chip section

6 for ( e = te; e < min ( E, te + Te ); e += 1 )

7 for ( f = tf ; f < min ( F, tf + Tf ); f += 1 )

8 for ( c = tc; c < min ( C, tc + Tc ); c += 1 )

9 for ( r = 0; r < R; r += 1 )

10 for ( s = 0; s < S; s += 1 )

11 O[k e f ] += I[r + e− 1 s+ f − 1 c]×W [k r s c]

Algorithm 4: On-Chip Section Dataflow Example

1 parallel for ( pk = tk; pk < min ( K, tk + Tk ); pk += ⌈Tk/Pk⌉ )

2 parallel for ( pe = te; pe < min ( E, te + Te ); pe += ⌈Te/Pe⌉ )

3 parallel for ( pf = tf ; pf < min ( F, tf + Tf ); pf += ⌈Tf/Pf⌉ )

4 for ( k = pk; k < min ( K, tk + Tk, pk + ⌈Tk/Pk⌉ ); k += 1 )

5 for ( e = pe; e < min ( E, te + Te, pe + ⌈Te/Pe⌉ ); e += 1 )

6 for ( f = pf ; f < min ( F, tf + Tf , pf + ⌈Tf/Pf⌉ ); f += 1 )

7 for ( c = tc; c < min ( C, tc + Tc ); c += 1 )

8 for ( r = 0; r < R; r += 1 )

9 for ( s = 0; s < S; s += 1 )

10 O[k e f ] += I[r + e− 1 s+ f − 1 c]×W [k r s c]

the corresponding entries in the last column of Table 1. The
right combination of tile size and tile processing order that
yields minimum off-chip memory accesses is considered the
optimal off-chip dataflow, which is defined in Equation (4).
An optimal off-chip dataflow for a DNN shall fully leverage
the assigned on-chip memory share Oi while maximizing
data reuse between the successively processed tiles.

V i = min(V i
weight, V

i
input, V

i
output)

s.t. O<Tk:Te:Tf :Tc:R:S> ≤ Oi
(4)

4.2 On-Chip Dataflow Selection
The goal of on-chip dataflow optimization is to minimize

the on-chip memory accesses which are also more costly than
MAC operations [20]. Unlike off-chip dataflows which likely
incur only temporal data reuse, on-chip dataflows can result
in both temporal and spatial data reuse occasions.

The input of the on-chip dataflow selection algorithm is
the share of compute resources for a DNN M i as well as the
tile parameters of a certain layer ⟨Tk : Te : Tf : Tc : R : S⟩ in
that DNN. Please note that M i is measured by the number
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Fig. 3: Tile example to illustrate on-chip dataflow selection.

of PEs, or PE partitions if allocation of compute resources is
performed at a coarser granularity. The output of the on-chip
dataflow selection algorithm is the right spatial and temporal
distribution of MAC operations across PEs and within each
PE, respectively. Algorithm 4 shows an example of an on-chip
dataflow that processes the MAC operations in parallel in
Pk × (Pe × Pf ) PEs while maximizing reuse of partial sums
within each PE similar to [19], [28]. Pk × (Pe × Pf ) must not
exceed the assigned compute resources M i. An optimal on-
chip dataflow for a DNN tile shall fully leverage the spatial
parallelism capability provided by the numerous PEs while
maximizing temporal data reuse inside each individual PE.

4.2.1 On-Chip Dataflow Exploration
We study the data reuse opportunities of different on-chip

dataflows on tile in Fig. 3 and summarize the resulting set of
communication patterns that must be accommodated by the
flexible silicon photonic network in the proposed MDA accel-
erator in Table 2. We identify four communication patterns:
GLB→PE unicast, GLB←PE unicast, PE→PE unicast, and
GLB→PE multicast. In cases like processing MAC operations
in parallel in ⟨e f⟩ dimensions, transmissions of weights and
input features incur the GLB→PE unicast communication
pattern. As a result, the flexible silicon photonic network in
the proposed MDA accelerator must support simultaneous
multicast from GLB to two orthogonal PE sets.

No Parallelism: Fig. 4 (a) lists the MAC operations involved
in processing the DNN tile shown in Fig. 3. Only PE 0 is used.
There are four types of temporal data reuse occasions: weight
reuse due to convolutional sliding window (e.g., weight 00
in 00 × a0, 00 × b0, 00 × d0, and 00 × e0), input feature reuse
due to convolutional sliding window (e.g., input feature e0 in
30×e0, 20×e0, 10×e0, and 00×e0), input feature reuse due
to multiple weight kernels (e.g., input feature a0 in 00 × a0
and 40× a0), and partial sum reuse in generating any output
feature. Please note that the weight and input feature reuse
occasions due to convolutional sliding window do not occur
simultaneously because of the pairwise operation nature. The
temporal data reuse occasions can be leveraged by adjusting
the MAC operations inside PE 0. For instance, sequentially
processing 00×a0, 00× b0, 00×d0, and 00×e0 leverages the
weight reuse opportunities while sacrificing the input feature
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Fig. 4: Temporal and spatial distribution of MAC operations across PEs and within each PE and the consequent data reuse
instances. We use the DNN tile ⟨Tk : Te : Tf : Tc : R : S⟩ = ⟨2 : 2 : 2 : 2 : 2 : 2⟩ as an example.

and partial sum reuse opportunities. GLB→PE unicast and
GLB←PE unicast communication patterns are involved.

Parallelism in ⟨k⟩ Dimension: Fig. 4 (b) demonstrates the
parallel distribution of MAC operations in the ⟨k⟩ dimension.
PE 0 and PE 1 are used as Tk = 2. We observe that temporal
input feature reuse due to multiple weight kernels is turned
into spatial reuse (e.g., input feature a0 in 00×a0 on PE 0 and
40 × a0 on PE 1) while the other three temporal data reuse
occasions remain unchanged. Consequently, one additional
communication pattern, GLB→PE multicast, is involved in
potential input feature transmission.

Parallelism in ⟨c⟩ Dimension: Fig. 4 (c) demonstrates the
parallel distribution of MAC operations in the ⟨c⟩ dimension.
PE 0 and PE 1 are used as Tc = 2. We observe that temporal
partial sum reuse is undermined in part while the other three
temporal data reuse occasions remain unchanged. The partial

sums generated from PE 0 and PE 1 must be accumulated to
generate any output feature. One additional communication
pattern, PE→PE unicast, is accordingly involved in potential
partial sum transmission.

Parallelism in ⟨e f⟩ Dimensions: Fig. 4 (d) illustrates the
parallel distribution of MAC operations in both ⟨e⟩ and ⟨f⟩
dimensions. Four PEs, PE 0 to PE 3, are used as Te×Tf = 4.
We observe that temporal weight and input feature reuse
due to convolutional sliding window are turned into spatial
reuse (e.g., weight 00 in 00×a0, 00× b0, 00×d0, and 00× e0,
input feature e0 in 30 × e0, 20 × e0, 10 × e0, and 00 × e0)
while the other two temporal data reuse occasions remain
unchanged. Note that the generated spatial weight and input
feature occasions still do not occur simultaneously because of
the pairwise operation nature. Consequently, the GLB→PE
multicast communication pattern is involved in the potential

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3327535

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on October 29,2023 at 22:16:43 UTC from IEEE Xplore.  Restrictions apply. 



6

TABLE 2: Communication Patterns

Dimension Data Spatial Temporal Communication Patterns

⟨k⟩
W ✘ ✔ GLB→ PE Unicast
I ✔ ✔ GLB→ PE Multicast
P ✔ GLB↔ PE Unicast

⟨c⟩
W ✘ ✔ GLB→ PE Unicast
I ✘ ✔ GLB→ PE Unicast
P ✔ GLB↔ PE PE→ PE Unicast

⟨e f⟩
W ✔ ✘ GLB→ PE Multicast
I ✔ ✔ GLB→ PE Multicast
P ✔ GLB↔ PE Unicast

⟨r s⟩
W ✘ ✔ GLB→ PE Unicast
I ✔ ✔ GLB→ PE Multicast
P ✔ GLB↔ PE PE→ PE Unicast

⟨k e f⟩
W ✔ ✘ GLB→ PE Multicast
I ✔ ✘ GLB→ PE Multicast
P ✔ GLB↔ PE Unicast

⟨k e f c⟩
W ✔ ✘ GLB→ PE Multicast
I ✔ ✘ GLB→ PE Multicast
P ✔ GLB↔ PE PE→ PE Unicast

⟨k e f c r s⟩
W ✔ ✘ GLB→ PE Multicast
I ✔ ✘ GLB→ PE Multicast
P ✘ GLB↔ PE PE→ PE Unicast

transmission of either weight or input feature data type.
Parallelism in ⟨r s⟩ Dimensions: Fig. 4 (e) illustrates the

parallel distribution of MAC operations in both ⟨r⟩ and ⟨s⟩
dimensions. Four PEs, PE 0 to PE 3, are used since R×S = 4.
We observe that temporal partial sum reuse is undermined in
part while temporal input feature reuse due to convolutional
sliding window is turned into spatial reuse (e.g., input feature
e0 in 30×e0, 20×e0, 10×e0, and 00×e0). Meanwhile, another
two temporal data reuse occasions remain unchanged. As a
result, the additional GLB→PE multicast and PE→PE unicast
communication patterns are involved to potentially transmit
input feature and partial sum data types, respectively.

Parallelism in ⟨k e f⟩ Dimensions: Fig. 4 (f) illustrates the
parallel distribution of MAC operations in ⟨k⟩, ⟨e⟩, and ⟨f⟩
dimensions. Eight PEs, PE 0 to PE 7, are used as Tk × Te ×
Tf = 8. We observe that only the temporal reuse of partial
sum remains unchanged. Temporal weight and input feature
reuse due to convolutional sliding window (e.g., weight 00 in
00×a0, 00×b0, 00×d0, and 00×e0, input feature e0 in 30×e0,
20×e0, 10×e0, and 00×e0), as well as temporal input feature
reuse due to multiple weight kernels (e.g., input feature a0 in
00× a0 on PE 0 and 40× a0 on PE 1), are turned into spatial
reuse. Hence, the GLB→PE multicast communication pattern
is involved in the potential transmission of both weight and
input feature data types.

Parallelism in ⟨k e f c⟩ Dimensions: If compared against the
above case of distributing MAC operations in parallel in ⟨k⟩,
⟨e⟩, and ⟨f⟩ dimensions, increasing parallel distribution in
the additional ⟨c⟩ dimension does not incur any conversions
of temporal data reuse opportunities into spatial data reuse
opportunities while the temporal partial sum reuse is some-
how partially undermined. Consequently, distributing MAC
operations in parallel in the additional ⟨c⟩ dimension is only
beneficial when the benefit from doubling the involved PEs
(Tc = 2) can mitigate the drawback due to the partial loss of
temporal data locality.

Parallelism in ⟨k e f c r s⟩ Dimensions: This represents an
extreme situation where MAC operations are processed in
parallel in every possible dimension while temporal locality
is completely lost. The optimal on-chip dataflow lies between

the two extremes of not having computation parallelism in
any dimension, and having parallelism in all dimensions.

4.2.2 Key Observations
We make the following five observations according to the

on-chip dataflow exploration from the perspective of parallel
processing: (1) increasing processing parallelism among PEs
leads to the loss of temporal data reuse opportunities, which,
however, are converted into spatial data reuse opportunities
that can be leveraged by the efficient multicast capability of
silicon photonics; (2) parallel processing in the ⟨k⟩, ⟨e⟩, and
⟨f⟩ dimensions is most beneficial as the lost temporal data
reuse opportunities are entirely converted into spatial data
reuse opportunities; (3) parallel processing in the ⟨r⟩ and ⟨s⟩
dimensions is less beneficial because the same spatial input
feature reuse opportunities can be obtained through parallel
processing in the ⟨e⟩ and ⟨f⟩ dimensions while extra fraction
of the temporal partial sum reuse opportunities is lost; (4)
parallel processing in the ⟨c⟩ dimension is least beneficial as it
only leads to the lost of a fraction of the temporal partial sum
reuse opportunities; (5) parallel processing in all three ⟨k⟩,
⟨e⟩, and ⟨f⟩ dimensions represents an ideal case where high
parallelism and full usage of the data reuse opportunities are
achieved simultaneously [19].

5 MDA ACCELERATOR ARCHITECTURE

5.1 Architecture Overview
Fig. 5 (a) shows an architectural overview of the proposed

MDA accelerator. It includes a GLB and M partitions, where
each partition contains N×N (N = 4 in Fig. 5 for clarity) PEs.
Each partition is connected to the GLB through a dedicated
waveguide with N transmitters and N receivers on the GLB
end. Each PE in any partition is equipped with a transmitter
whose resonant wavelength is thermally tuned and a receiver
whose resonant wavelength and split ratio are thermally and
electrically tuned, respectively. In front of each row of PEs in
a partition, N MRRs with fixed resonant wavelengths and
tunable split ratios are implemented to forward a particular
fraction of laser power in N wavelengths to PEs in this row.
There are in total M ×N × (3×N + 2) MRRs in the MDA
accelerator. Please note that each PE performs dot-product
along the ⟨c⟩ dimension to exploit efficient spatial reduction
as in [6]. Besides, we can use the space-division multiplexing
technique to deploy multiple waveguides between the GLB
and a given partition. The MDA Controller is responsible for
undertaking the resource allocation and dataflow selection
algorithms described in Algorithm 3 and tuning the resonant
wavelength and split ratio of each MRR inside a partition.

5.2 MDA Silicon Photonic Network Working Modes
The flexible silicon photonic network in the MDA acceler-

ator can be segmented at runtime and adaptively configured
into a collection of working modes to efficiently facilitate the
communication patterns extracted from the on-chip dataflow
exploration. Fig. 5 (b)-(f) and Table 3 describe all five working
modes in support of four communication patterns and how
they are implemented in one partition. Please note that we
utilize a specific color to represent a resonant wavelength. In
particular, ✘ and ✔ represent that an MRR is at off-resonant
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Fig. 5: MDA architecture overview and configurations for different working modes.

and on-resonant states, respectively. a/b represents the split
ratio of an MRR.

GLB→PE Unicast Mode: Fig. 5 (b) illustrates the working
mode that facilitates the GLB→PE unicast communication
pattern. In this working mode, the GLB sequentially commu-
nicates with different rows of PEs in a partition due to the
mismatch between the number of PEs in a partition N ×N
and the number of available wavelengths N . Fig. 5 (b) shows
the case of unicast communication from the GLB to Row 0 of
PEs in a partition. The transmitters on the GLB end work on
resonant wavelengths λ0− λ3 to send data. The four tunable
MRRs R0 −R3 also work on resonant wavelengths λ0 − λ3

and are electrically tuned to a universal split ratio of 1/0,
forwarding all the laser power of wavelengths λ0−λ3 to PEs
in Row 0. Meanwhile, the receivers connected to PE 0−PE 3

in Row 0 are thermally tuned to resonant wavelengths λ0−λ3,
respectively, and electrically tuned to a universal split ratio of
1/0. In a sense, all the laser power of any specific wavelength
that carries transmitted data is received by a corresponding
PE in Row 0, facilitating the unicast communication from the
GLB to PEs in Row 0. Unicast communications to other rows
are subsequently accomplished following a similar approach.

GLB←PE Unicast Mode: Fig. 5 (c) illustrates the working
mode that facilitates the GLB←PE unicast communication
pattern. In this working mode, different rows of PEs in a
partition sequentially communicate with the GLB due to the
mismatch between the number of PEs in a partition N ×N
and the number of available wavelengths N . Fig. 5 (b) shows
the case of unicast communication from Row 0 of PEs in a
partition to the GLB. The four tunable MRRs R0 − R3 still
work on resonant wavelengths λ0 − λ3 and are electrically
tuned to a universal split ratio of 1/0, forwarding all the

laser power of unmodulated wavelengths λ0 − λ3 to PEs in
Row 0. Meanwhile, the transmitters connected to PE 0−PE 3

in Row 0 are thermally tuned to resonant wavelengths λ0−λ3,
respectively, to send data. The receivers on the GLB end work
on resonant wavelengths λ0−λ3. Therefore, data sent by any
PE in Row 0 on the associated wavelength is received by the
GLB, facilitating the unicast communication from the PEs in
Row 0 to the GLB. Unicast communications from other rows
are subsequently accomplished following a similar approach.

PE→PE Unicast Mode: Fig. 5 (d) demonstrates the working
mode facilitating the PE→PE unicast communication pattern.
In this working mode, each PE sends data to its downstream
adjacent PE in the same row while the last PE sends data to
the GLB. The four tunable MRRs R0 −R3 work on resonant
wavelengths λ0 − λ3 but are electrically tuned to different
split ratios depending on their physical locations. Specifically,
tunable MRRs in Row 0, Row 1, Row 2, Row 3 are tuned to
split ratios 1/3, 1/2, 1/1, and 1/0, respectively, forwarding
a quarter of the laser power of unmodulated wavelengths
λ0 − λ3 to PEs in each row. In the meantime, the transmitter
connected to each PE is thermally tuned to the same resonant
wavelength as its downstream adjacent PE in the same row,
while the transmitters connected to the last PEs of different
rows are thermally tuned to different resonant wavelengths.
For instance, the transmitter and receiver connected to PE 0

and PE 1 in Row 0 share the resonant wavelength λ0, while
the last PEs in Row 0, Row 1, Row 2, and Row 3 are tuned
to resonant wavelengths λ3, λ0, λ1, and λ2, respectively.
The receivers on the GLB end work on resonant wavelengths
λ0−λ3. Therefore, a chain of data transmission is constructed
between PE 0, PE 1, PE 2, and PE 3 in each row and the GLB,
facilitating the inter-PE unicast communication.
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TABLE 3: MDA Silicon Photonic Network Working Modes

Mode Row R0 R1 R2 R3
PE0 PE1 PE2 PE3

R T R T R T R T

0 1/0 1/0 1/0 1/0 1/0 ✘ 1/0 ✘ 1/0 ✘ 1/0 ✘

GLB→ PE 1 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Unicast 2 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

3 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

0 1/0 1/0 1/0 1/0 ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✔

GLB← PE 1 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Unicast 2 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

3 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

0 1/3 1/3 1/3 1/3 ✘ ✔ 1/0 ✔ 1/0 ✔ 1/0 ✔

PE→ PE 1 1/2 1/2 1/2 1/2 ✘ ✔ 1/0 ✔ 1/0 ✔ 1/0 ✔

Unicast 2 1/1 1/1 1/1 1/1 ✘ ✔ 1/0 ✔ 1/0 ✔ 1/0 ✔

3 1/0 1/0 1/0 1/0 ✘ ✔ 1/0 ✔ 1/0 ✔ 1/0 ✔

0 1/0 ✘ ✘ ✘ 1/3 ✘ 1/2 ✘ 1/1 ✘ 1/0 ✘

GLB→ PE 1 ✘ 1/0 ✘ ✘ 1/3 ✘ 1/2 ✘ 1/1 ✘ 1/0 ✘

R Multicast 2 ✘ ✘ 1/0 ✘ 1/3 ✘ 1/2 ✘ 1/1 ✘ 1/0 ✘

3 ✘ ✘ ✘ 1/0 1/3 ✘ 1/2 ✘ 1/1 ✘ 1/0 ✘

0 1/3 1/3 1/3 1/3 1/0 ✘ 1/0 ✘ 1/0 ✘ 1/0 ✘

GLB→ PE 1 1/2 1/2 1/2 1/2 1/0 ✘ 1/0 ✘ 1/0 ✘ 1/0 ✘

C Multicast 2 1/1 1/1 1/1 1/1 1/0 ✘ 1/0 ✘ 1/0 ✘ 1/0 ✘

3 1/0 1/0 1/0 1/0 1/0 ✘ 1/0 ✘ 1/0 ✘ 1/0 ✘

GLB→ Row-Wise Multicast Mode: Fig. 5 (e) demonstrates
the working mode facilitating the GLB→PE row-wise mul-
ticast (R multicast) communication pattern. In this working
mode, PEs in different rows receive different data sent from
the GLB while PEs in each row receive the same data. The
transmitters on the GLB end work on resonant wavelengths
λ0 − λ3 to send data. Only one tunable MRR is activated
and electrically tuned to a split ratio of 1/0 to forward all the
laser power of a specific wavelength to a row. For instance,
tunable MRR R0 in Row 0 work on resonant wavelength λ0,
forwarding all the laser power of wavelength λ0 to PEs in
Row 0. Meanwhile, the receivers connected to PE 0−PE 3

in Row 0 are thermally tuned to resonant wavelength λ0

and electrically tuned to split ratios 1/3, 1/2, 1/1, and 1/0,
respectively, so that each PE in Row 0 receives a quarter of
the laser power of the modulated wavelength λ0. Therefore,
multicast communication from the GLB to PEs in Row 0 is
accomplished. Multicast communications to other rows are
accomplished in parallel following a similar approach.

GLB→ Column-Wise Multicast Mode: Fig. 5 (f) illustrates
the working mode that facilitates the GLB→PE column-wise
multicast (C Multicast) communication pattern. PEs in each
row receive different data sent from the GLB while PEs in
each column (PEs in the same relative physical position but
in different rows) receive the same data. The transmitters on
the GLB end work on resonant wavelengths λ0 − λ3 to send
data. Tunable MRRs with the same resonant wavelength in
all four rows are electrically tuned to different split ratios.
For instance, tunable MRRs labeled as R0 in Row 0, Row 1,
Row 2, and Row 3 are tuned to split ratios of 1/3, 1/2, 1/1,
and 1/0, respectively, forwarding a quarter of the laser power
of wavelength λ0 to each row. In the meantime, the receivers
connected to PEs labeled as PE 0 in four rows are thermally
tuned to the resonant wavelength λ0 and a universal split
ratio of 1/0, so that each PE labeled as PE 0 receives a quarter
of the laser power of the modulated wavelength λ0. Hence,
multicast communication from the GLB to PEs in the first
column is accomplished. Multicast communications to other
columns are accomplished in parallel in a similar approach.

TABLE 4: Simulation Parameters

Parameter Value

Number of PE Partitions M 8
PE Partition Dimension N ×N 16× 16
PE Dot-Product Width 8
PE Operating Frequency 700 MHz
Data Width 16 bits

GLB Capacity 12 MB
GLB Bandwidth 480 GB/s
Off-Chip Memory HBM 358 GB/s

6 EVALUATION METHODOLOGY

6.1 Evaluation Setup

We extend the open-source MAESTRO simulator [29] to
model the concurrent processing of heterogeneous DNNs to
extract the numbers of MAC operations as well as accesses to
each memory hierarchy including local registers, shared GLB,
and off-chip memory. The obtained numbers are utilized to
derive the execution time that covers both computation and
communication aspects when taking the inter-DNN interfer-
ence into account and enforcing bandwidth constraints along
metallic-based or silicon photonic interconnects. The energy
consumption can also be derived from these numbers and
the power model discussed below. Table 4 demonstrates the
key simulation parameters we have assumed when modeling
the MDA accelerator architecture. We have assumed similar
parameters as in prior studies [10], [12]. To model the silicon
photonic interconnects, we have assumed a bit error rate of
1× 10−12 at the bit rate of 10 Gbps and wavelengths around
1550 nm. We have also assumed a maximum free spectral
range limit of 50 nm [18], reflecting the fabrication limitation
of MRR radius. The number of wavelengths utilized in the
MDA accelerator architecture is 16. The power penalty due
to crosstalk is negligible [30].

6.2 Power Consumption Model

We extract the power consumption of MAC operations
using Synopsys Design Compiler. The power consump-
tion of accessing local registers and the on-chip GLB is ob-
tained using CACTI 6.0 [31] while the power consumption
of accessing off-chip memory is obtained using DRAMSim2
[32]. The energy consumption of a metallic-based intercon-
nect is assumed to be 170 fJ/bit/mm [33] while the power
consumption of a silicon photonic interconnect is obtained
from Equation (5).

Poverall = Ptx + Prx + Plaser + Pthermal (5)

The overall power consumption (Poverall) includes four
separate parts: the power consumption of transmitters (Ptx),
the power consumption of receivers (Prx), the power con-
sumption of the off-chip laser source (Plaser), and the power
consumption of the resistive heaters co-located with MRRs
to mitigate both thermal and process variations (Pthermal).
We assume the power consumption of a transmitter per
wavelength Ptx = 0.9 mW and the power consumption of a
receiver per wavelength Prx = 0.6mW [34]. We also assume
the power consumption of the resistive heater per MRR
Pthermal = 0.15mW [35]. The power consumption of the off-
chip laser source (Plaser) is obtained from Equation (6), when

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3327535

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on October 29,2023 at 22:16:43 UTC from IEEE Xplore.  Restrictions apply. 



9

assuming the photodetector sensitivity Prs = −26 dBm [19],
the power penalty due to extinction ratio Pextinction = 2 dB
[36], and the system margin Csystem = 4 dB [37]. Note that
the overall insertion loss Closs is obtained by accumulating
the insertion loss of each component along a silicon photonic
communication channel.

Plaser = Prs + Closs + Pextinction +Msystem (6)

6.3 Baseline Architectures
The proposed MDA accelerator architecture is compared

against other state-of-the-art multi-DNN accelerators includ-
ing PREMA (PR) [10], AI-MT (AI) [11], Planaria (PL) [12],
and HDA [15]. PREMA and AI-MT only support temporal
multiplexing of DNNs while Planaria supports temporal and
spatial multiplexing of DNNs. HDA supports multiplexing
of DNNs on three sub-accelerators with distinct dataflow
optimizations. All four baseline architectures as well as the
proposed MDA accelerator architecture are set to the same
computation capacity for fair comparison. They also share
the same GLB size of 12 MB [10], [12], the same data width
of 16 bits [27], the same PE clock frequency of 700 MHz, and
the same off-chip memory bandwidth of 358 GB/s assuming
a high-bandwidth memory (HBM) module.

6.4 Evaluation Benchmarks
We compile a multi-DNN benchmark from nine DNN

models [38], [39], [40], [41], [42], [43], [44] for both image pro-
cessing and object detection application cases. A randomly
arranged sequence of DNNs from the pool of the nine models
is applied to the simulation of the proposed MDA accelerator
architecture and other baseline architectures. The length of
this sequence of DNNs is sufficient to capture diverse DNN
multiplexing scenarios. The arrival time of each DNN from
this sequence follows a Poisson Distribution as in [12]. The
DNN arrival rate λ is measured by the average number of
arrived DNNs in one million clock cycles. Each DNN is also
assigned an expected completion deadline measured by SLA.

7 EXPERIMENT RESULTS

7.1 Speedup Results
Speedup measures the relative performance of two archi-

tectures working on the same application task. We first fix the
DNN arrival rate at λ = 9/M while varying the predefined
completion deadline SLA from 3×Tisolate to 12×Tisolate. A
small SAL number indicates an urgent completion deadline
that is challenging to fulfill. A large SLA number indicates a
loose completion deadline from the application perspective
while implying opportunities for better DNN multiplexing
setups from the system perspective. The speedup of AI over
PR increases insignificantly from 1.17 to 1.29 as AI does not
fully leverage the opportunities for better DNN multiplexing
setups due to its constraints of only supporting the temporal
DNN multiplexing and a fixed dataflow. The speedup of PL
over PR increases from 1.07 to 1.62. The increase is trivial in
cases with urgent completion deadlines (1.07 for 3× Tisolate

completion deadline and 1.10 for 6 × Tisolate completion
deadline), however, significant in cases with loose completion

deadlines (1.40 for 9× Tisolate completion deadline and 1.62
for 12× Tisolate completion deadline). The reason is that its
overhead for supporting spatial DNN multiplexing is only
compensated when there are sufficient DNN multiplexing
opportunities. The speedup of HDA over PR increases from
1.39 to 1.50. The increase is significant in cases with urgent
completion deadlines but it slows down as the completion
deadline becomes looser. This is because HDA only supports
multiplexing of up to three DNNs. The speedup of MDA over
PR increases from 2.55 to 3.65. The significant speedup results
from three aspects: (1) full support of temporal and spatial
concurrent processing of DNNs like PL; (2) full support of
adaptable dataflow configuration only partially supported
by HDA; (3) silicon photonic interconnects that enable low-
latency and high-bandwidth communication.

We then fix the predefined completion deadline SLA at
6× Tisolate while varying the DNN arrival rate from 3/M to
12/M . A large arrival rate has similar indications as a large
SLA number. We can expect more intense DNN multiplexing,
making adherence to completion deadlines challenging while
providing more opportunities for better DNN multiplexing
setups. The speedup of AI over PR increases insignificantly
from 1.13 to 1.23 as AI does not leverage either better DNN
multiplexing setups or dataflow flexibility. The speedup of
PL over PR increases from 1.07 to 1.53. The increase is trivial
in cases with low DNN arrival rates (1.07 for λ = 3/M and
λ = 6/M , and 1.09 for λ = 9/M ), however, significant in the
case with the highest DNN arrival rate (1.53 for λ = 12/M ).
This is because the spatial DNN multiplexing capability of
PL is only leveraged when the DNN arrival rate is high. The
speedup of HDA over PR increases from 1.19 to 1.50 for its
limited spatial DNN multiplexing capability and dataflow
flexibility. The speedup of MDA over PR increases notably
from 2.31 to 4.71 due to the combined effects of the spatial
DNN multiplexing capability, dataflow flexibility, and silicon
photonic interconnects, similar to the case of increasing the
predefined completion deadline. The speedup comparison
results are shown in Fig. 6.

7.2 Energy Efficiency Results

We define energy efficiency as the reciprocal of the energy
consumption of processing a sequence of DNNs. We study
the energy efficiency of MDA and other baseline architectures
by fixing the DNN arrival rate at λ = 9/M while varying
the predefined completion deadline SLA from 3× Tisolate to
12× Tisolate, and fixing the predefined completion deadline
SLA at 6× Tisolate while varying the DNN arrival rate from
3/M to 12/M . The energy efficiency of AI is similar to that
of PR as they both only support a fixed dataflow. PL achieves
better energy efficiency compared to AI, especially in cases
with loose predefined completion deadline (1.68×, SLA =
12× Tisolate and λ = 9/M ) or high DNN arrival rate (1.60×,
SLA = 6× Tisolate and λ = 12/M ), due to its spatial DNN
multiplexing capability, which leads to higher utilization
of compute resources. HDA achieves significantly higher
energy efficiency than PR, AI, and PL as its sub-accelerators
offer three dataflow choices for the multiplexed DNNs. HDA
achieves up to 2.8× increase in energy efficiency compared
to PR. The proposed MDA architecture achieves up to 7.3 ×
increase in energy efficiency compared to PR since it provides

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3327535

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on October 29,2023 at 22:16:43 UTC from IEEE Xplore.  Restrictions apply. 



10

0

1

2

3

4

5

λ = 3 / M 6 9 12

S
p
e
e
d
u
p

PR AI PL HDA MDA

0

1

2

3

4

5

SLA = 3 6 9 12

S
p
e
e
d
u
p

PR AI PL HDA MDA

λ = 9 / M SLA = 6

Fig. 6: Speedup compared to the PR baseline when varying
SLA (left) and arrival rate λ (right).
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Fig. 7: Energy efficiency comparison when varying SLA (left)
and λ (right). All values are normalized to the PR baseline.

full flexibility in dataflow selection and extremely energy-
efficient communication with silicon photonic interconnects.
The energy efficiency comparison results are shown in Fig. 7.

7.3 SLA Satisfaction Rate Results

We define SLA satisfaction rate as the percentage of the
DNNs that adhere to their predefined completion dead-
lines. Fig. 8 shows that the SLA satisfaction rates for all
architectures increase when fixing the DNN arrival rate at
λ = 9/M and increasing the predefined completion deadline
SLA from 3 × Tisolate to 12 × Tisolate, and decrease when
fixing the predefined completion deadline SLA at 6×Tisolate

and increasing the DNN arrival rate from 3/M to 12/M . In
particular, AI and HDA achieve low SLA satisfaction rates
as their scheduling algorithms do not prioritize DNNs with
high computational demands or short remaining time until
their predefined completion deadlines. PR achieves high
SLA satisfaction rates as its scheduling algorithm favors
DNNs of high priority or short estimated completion time.
However, PR still suffers from low SLA satisfaction rates in
cases where adhering to predefined completion deadlines is
challenging (10%, SLA = 6 × Tisolate and λ = 12/M ). PL
achieves the highest SLA satisfaction rate in all the baseline
architectures. This is because the assigned compute resources
to a DNN in PL are negatively correlated to the estimated
remaining time until its predefined completion deadline.
When fixing the DNN arrival rate at λ = 9/M , the proposed
MDA architecture achieves a 93% SLA satisfaction rate
when assuming a loose predefined completion deadline of
12× Tisolate. This number decreases to 73% when assuming
the most strict predefined completion deadline of 3×Tisolate.
Similarly, when fixing the predefined completion deadline at
6× Tisolate and increasing the DNN arrival rate from 3/M
to 12/M , the SLA satisfaction rate of MDA decreases from
98% to 81%. The reasons that the SLA satisfaction rate of
the proposed MDA architecture can be maintained at a high
level and experience an insignificant decrease in cases with
intense DNN multiplexing are: (1) DNNs are processed faster
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Fig. 8: SLA satisfaction rate comparison when varying SLA
(left) and arrival rate λ (right).
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Fig. 9: Fairness comparison when varying SLA (left) and
arrival rate λ (right).

on the MDA architecture as demonstrated in Fig. 6; (2) the
MDA resource allocation algorithm assigns more compute
resources to DNNs with high computational demands or
short time left until the predefined completion deadlines.

7.4 Fairness Results
Fairness [45] is defined as the minimum ratio of relative

normalized progress rates of any two concurrently processed
DNNs. Fairness is a value that ranges between 0 (no fairness,
at least one of the concurrently processed DNNs starves) and
1 (perfect fairness, all concurrently processed DNNs make
equal progress). Fig. 9 illustrates that the fairness numbers of
MDA and other baseline architectures monotonically increase
when fixing the DNN arrival rate at λ = 9/M and increasing
the predefined completion deadline from 3× Tisolate to 12×
Tisolate. Furthermore, the fairness numbers monotonically
decrease when fixing the predefined completion deadline at
6× Tisolate and increasing the DNN arrival rate from 3/M
to 12/M . AI and HDA suffer from low fairness because their
scheduling algorithms do not guarantee the equal progress
of concurrently processed DNNs. PR especially favors DNNs
with short estimated completion time, potentially leading
to the starvation of other DNNs. PL and MDA achieve the
highest fairness because they both allocate compute resources
based on computational demands while favoring DNNs with
lagging progress.

8 RELATED WORK

Multi-DNN Accelerators: Several prior multi-DNN acceler-
ators [10], [11] support temporal multiplexing of DNNs. They
require minimal hardware modifications from original single-
DNN accelerators but suffer from low system utilization due
to the unmanaged mismatch [12] between hardware resource
demand and provision. Other prior multi-DNN accelerators
[12], [13] support both temporal and spatial multiplexing of
DNNs, however, still suffer from dataflow inflexibility. Some
recent multi-DNN accelerators [15], [16] provide a certain
level of flexibility in dataflow choices. However, the choices
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are limited due to the rigidity of metallic-based interconnects.
The proposed MDA accelerator architecture exploits silicon
photonic interconnects to construct flexible communication
fabrics required for multi-DNN processing and free dataflow
selection. To our knowledge, this is the first attempt to solve
the multi-DNN processing challenges with silicon photonics.

Multi-DNN on GPUs and FPGAs: There is a large body of
related work on multi-DNN support on GPU [46], [47], [48]
and FPGA [49] platforms. This work focuses on facilitating
multi-DNN processing on the hardware accelerator platform
where the communication fabrics could play a pivotal role
in determining the functionality, performance, and energy
efficiency of the platform. That is our motivation to explore
the utilization of the disruptive silicon photonics technology.

Dataflow Exploration: Prior work has extensively studied
dataflow optimization [4], [6], [27], [50], [51], [52], [53], [54],
[55] from temporal data reuse perspective. However, some
work targeting single-DNN processing on silicon photonic
accelerators [8], [19] has emphasized the necessity of partially
shifting the dataflow optimization paradigm from temporal
data reuse to spatial data parallelism. This work exhaustively
explores the dataflow design space by enumerating the tem-
poral data reuse and spatial data parallelism opportunities,
as well as the resulting communication patterns, along all
DNN dimensions or combinations of several dimensions.

9 CONCLUSION

In this paper, we develop the MDA accelerator architec-
ture which is specially crafted to empower high-performance
and energy-efficient concurrent processing of diverse DNNs.
MDA includes three notable parts: (1) a resource allocation
algorithm that assigns compute resources based on both com-
putational demands and priorities; (2) a dataflow selection
algorithm that finds off-chip and on-chip dataflows leading
to minimum memory accesses; (3) a flexible silicon photonic
network that can be dynamically segmented and adaptively
configured to facilitate the communication patterns of concur-
rently processed DNNs. Simulation studies have shown the
effectiveness of the proposed MDA accelerator architecture.
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