
1
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Network-on-Chip Router Design for
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Abstract—Heterogeneous manycores comprised of CPUs, GPUs and accelerators are putting stringent demands on network-on-chips
(NoCs). The NoCs need to support the combined traffic, including both latency-sensitive CPU traffic and throughput-sensitive GPU and
accelerator traffic. We study the characteristics of the combined traffic, and observe that (1) the limited injection bandwidth is the main
obstacle to throughput improvement, and (2) the latency due to local and global contention accounts for a significant portion of the
network latency. We propose a router architecture named ALPHA for heterogeneous manycores. ALPHA introduces two new
optimizations: (1) increasing injection bandwidth to improve throughput, and (2) resolving local and global contention to reduce network
latency. Specifically, ALPHA increases the injection bandwidth through modifications to injection link, crossbar switch and buffer
organization in the injection port of the router; ALPHA identifies the upcoming local contention and resolves it by optimally selecting traffic
routes; ALPHA detects and alleviates the global contention by utilizing a supervised learning engine for traffic analysis, prediction, and
adjustment. Simulation results using Rodinia benchmark show that ALPHA provides 28% throughput increase, 24% latency reduction,
22% execution time speedup, and 19% energy efficiency improvement, compared to the baseline router.

Index Terms—Heterogeneous manycore, Network-on-Chip, Router, Supervised learning
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1 INTRODUCTION & MOTIVATION

H ETEROGENEOUS manycores have been shown to be
able to achieve better energy efficiency and higher

performance as compared to homogeneous manycores, due
to the fact that they leverage on-chip specialization [1],
[2], [3], [4], [5], [6], [7], [8]. Because of the differences
in microarchitectures and programming models, different
types of cores in a heterogeneous manycore system can
have distinct traffic patterns and sensitivities to network
throughput and latency. For example, GPU cores involve
more point-to-point streaming traffic and are sensitive to
throughput [9], [10], [11], [12], [13], [14], while CPU cores
involve more coherence traffic and are sensitive to latency
[15], [16], [17], [18], [19]. In order to simultaneously meet
the communication demands of the different cores, high-
throughput and low-latency network-on-chips (NoCs) are
critical.

Conventional NoC and router designs for heterogeneous
manycores focus on alleviating interference between the
throughput-sensitive GPU traffic and the latency-sensitive
CPU traffic [4], [20], [21], [22]. These designs either isolate
different types of traffic through network partitioning [4],
[20], or combine network partitioning with prioritization
techniques which enable fast propagation of a certain type
of traffic in the network [21], [22]. Although prior designs
greatly alleviate the interference problem, they introduce
some negative impacts on NoC performance. For example,
network partitioning may result in poor network utiliza-
tion and hence low throughput [20], while prioritization
techniques introduce extra latency due to their complicated
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allocation schemes [23], [24], [25]. The negative impacts of
the conventional designs on NoC performance motivate us
to explore other throughput and latency optimization oppor-
tunities beyond traffic interference alleviation techniques.

Throughput Improvement: Previous works mainly em-
ploy two approaches to improve NoC throughput: (1) de-
veloping better crossbar switch allocation schemes [26], [27],
[28], [29], and (2) increasing injection bandwidth [10], [11].
To explore the opportunities of improving NoC throughput,
we run the Rodinia benchmark suite [30], [31] on a heteroge-
neous manycore system connected by an 8×8 2D mesh NoC
with baseline two-stage wormhole routers, each of which
includes 2 virtual channels (VCs), 4 flit buffers per VC, and
an ideal crossbar switch allocation scheme. The ideal crossbar
switch allocation scheme, which guarantees that an output
port of a router is utilized as long as there is at least one
request for it [32], represents the optimization limit of the
first approach. We evaluate the average buffer utilization
which indicates the NoC throughput as in Figure 1, and
average injection queue length as in Figure 2.

We make two observations: (1) throughput improvement
delivered by allocation scheme optimization is minimal in
heterogeneous manycores, as the network is under-utilized
(buffer utilization � 1) in Figure 1, even with the ideal
crossbar switch allocation scheme; (2) the limited injection
bandwidth is the throughput bottleneck, as we infer low
network throughput from Figure 1 on one hand, and observe
long injection queue in Figure 2 on the other hand. These
two observations motivate us to efficiently increase injection
bandwidth while keeping the cost minimal, since previous
works incur excessive overheads [10], [11].

Latency Reduction: The overall latency consists of two
parts [15]: transfer latency and contention latency. The
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Fig. 1: Average buffer utilization when running the Rodinia
benchmark suite, normalized to maximal buffer utilization. 1
in Y axis represents that the NoC buffers are fully utilized.
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Fig. 3: Breakdown of overall network latency when running
the Rodinia benchmark suite.

transfer latency refers to the latency incurred when traversing
the links and the router pipelines, assuming there is no
contention over shared network resources. A large number
of techniques have been proposed to reduce the transfer
latency. Some techniques reduce the number of hops with
high-radix routers [33], [34] or bypass channels [35], while
others reduce the latency of traversing router pipeline by
overlapping some pipeline stages [36], [37], [38]. These
techniques are sufficient when traffic load is relatively low
and contention is less intensive. However, the traffic load
is usually high in heterogeneous manycores because of the
throughput-sensitive GPUs and accelerators. We run the
Rodinia benchmark suite on a heterogeneous manycore
system connected by an 8×8 2D mesh NoC with baseline
two-stage wormhole routers, and observe that the contention
latency takes up on average 55% of the network latency as
shown in Figure 3. Therefore, in order to further reduce the
network latency, the transfer latency reduction techniques
need to be augmented with efficient contention identification
and resolving schemes.

Contention can be classified into two types [39]: local
contention and global contention. An example of local
contention is shown in Figure 4(a) where two input ports
send traffic to the same output port simultaneously. The local
contention is expected to occur more frequently when the
injection bandwidth increases, as the injection port alone can
produce a contention as shown in Figure 4(b). An example of
global contention is shown in Figure 4(c) where contention
occurs at a remote router. While identifying local contention
is relatively easy, identifying global contention is challenging
and often expensive [16], [39], [40], [41].

Proposed Router Architecture: To this end, we propose
ALPHA, a NoC router design that is simultaneously op-
timized for throughput and latency performance in het-
erogeneous manycores. ALPHA achieves high throughput
by increasing the injection bandwidth, and low latency
by resolving both local and global contention. The main
contributions of this paper are:
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Fig. 2: Average injection queue length in network interface
when running the Rodinia benchmark suite.
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Fig. 4: Examples of (a) local contention (b) local contention
due to increased injection bandwidth (c) global contention.

• We extensively study the characteristics of the combined
traffic in heterogeneous manycores, and observe that (1)
the limited injection bandwidth is the major obstacle to
throughput improvement, and (2) the latency due to local
and global contention over the shared network resources
takes up a significant portion of the network latency.

• Based on these observations, we propose ALPHA, a
router architecture specifically designed for heterogeneous
manycores. ALPHA introduces two new optimizations: (1)
increasing injection bandwidth to improve throughput,
and (2) resolving both local and global contention to
reduce network latency. Specifically, ALPHA increases the
injection bandwidth through architectural modifications
to the injection link, the crossbar switch, and the buffer
organization in the injection port of the router; ALPHA
identifies the upcoming local contention at the crossbar
switch and resolves it by optimally selecting traffic routes;
ALPHA also utilizes a supervised learning engine to detect
the global contention through traffic analysis and predic-
tion, and alleviate the global contention by adaptively
adjusting the traffic injection process.

• We evaluate the proposed router architecture using both
synthetic traffic and the Rodinia benchmark suite. The
simulation results using synthetic traffic show that ALPHA
delivers 51% throughput increase and 38% latency reduc-
tion. The simulation results using the Rodinia benchmark
suite show that ALPHA provides 28% throughput increase,
24% latency reduction, 22% execution time speedup, and
19% energy efficiency improvement, as compared to the
baseline router architecture.

2 BASELINE ARCHITECTURE

Heterogeneous Manycore Architecture: A typical het-
erogeneous manycore architecture is shown in Figure 5(a).
This architecture consists of latency-sensitive CPU cores,
throughput-sensitive GPU cores, and memory controller
(MC) nodes. MC nodes include memory controllers, shared
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L2 cache banks and directory controllers. All the cores and
MC nodes are connected through network interfaces (NIs) by
a NoC. The mixed placement of CPU and GPU cores in this
heterogeneous manycore architecture is similar to [4], [21],
[42], while placing MC nodes in network interior is similar
to prior architectures [10], [42], [43].

Baseline Router: Two-stage wormhole routers, as in
Figure 5(b), are implemented to connect all the cores and
MC nodes in the heterogeneous manycore. As we employ
wormhole routing, each traffic packet is either segmented
into a head flit, several body flits and a tail flit, or packaged
in a single head/tail flit, depending on the packet length. The
route information within the head flit is read and processed
by Route Compute (RC) logic. The Virtual Channel Allocator
(VA) is responsible for allocating available virtual channels
(VCs) of downstream routers to requests on a per-packet
basis. The Switch Allocator (SA) assigns available paths in
the crossbar switch to requests on a per-flit basis. Each input
port holds a VC State Table, whose number of entries equals
the number of VCs in that input port. Each entry in the
VC State Table holds the information about global state (G),
output port (R), output VC number (O), current head and
tail pointer (P ), and the number of credits (C).

(a)                                                      (b) 
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Fig. 5: (a) A typical heterogeneous manycore system con-
nected by a NoC. (b) Baseline router architecture.

3 ALPHA ROUTER ARCHITECTURE

The proposed ALPHA router introduces two new opti-
mizations: (1) increasing the injection bandwidth to im-
prove throughput, and (2) resolving both local and global
contention to reduce network latency. In this section, we
explain the architectural modifications and corresponding
control scheme designs involved in these two optimizations
in a step-by-step manner. First, we describe the necessary
modifications to the injection link, the crossbar switch, and
the buffer organization in the injection port of the router, in
order to increase injection bandwidth. Second, we explain
the optimizations involved in ALPHA router to resolve
local contention, including modifications to VC State Table
and RC/VA/SA units, and control scheme designs of route
selection and switch allocation. Third, the architecture and
functioning mechanism of the supervised learning engine
designed for alleviating global contention are detailed in the
last part of this section.
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Fig. 6: Modifications in ALPHA to increase injection band-
width, including increased injection link, modified crossbar
switch, and modified buffer organization in the injection port.
The blurry units remain the same as in baseline router.

3.1 Increasing Injection Bandwidth
ALPHA increases injection bandwidth by (1) increasing
the injection link width, (2) increasing the crossbar switch
dimension, and (3) modifying the buffer organization in the
injection port of the router. These three modifications are
highlighted in Figure 6 and explained in detail below.

3.1.1 Modification to Injection Link
In order to increase the injection bandwidth, the injection
link in ALPHA is increased to twice as wide as other links.
We do not further increase the injection link width as other
works [10], [11] do, because (1) the successive injected packets
are very likely to share the same destination node due to
data spatial locality, and (2) there are only a few output
port choices for an injected packet if minimal routing is
guaranteed. For example, there are at most 2 output port
choices from a source node to a destination node in a 2D
mesh network under minimal routing constraint. In this case,
increasing the injection link width to over twice the link
width in the baseline router results in trivial performance
improvement while suffering significant overheads.

3.1.2 Modification to Crossbar Switch
In order to fully utilize the extended injection link, we also
extend the number of crossbar inputs from P to P +1, where
P is the number of input ports in the router. The additional
crossbar input is connected to the injection port. Hence, up
to two flits in the injection port can traverse the crossbar
switch in one clock cycle. This design corresponds to the
previous modification of increasing the injection link width.
Specifically, the crossbar switch is extended from 5×5 to 6×5,
as a normal router in 2D mesh topology has 5 input ports.

3.1.3 Modification to Injection Port Buffer Organization
As the bandwidth at the injection link as well as at the
crossbar switch has been increased, the injection port itself
is now the bottleneck to increasing injection bandwidth. We
modify the buffer organization and add additional MUXs to
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solve this issue. At the input side, the DEMUX is replaced by
two MUXs. At the output side, an additional MUX is added
and connected to the new input in the crossbar switch. By
doing so, up to two flits can be written to and read from the
buffers in the injection port in one clock cycle. The ALPHA
router’s capability of resolving local contention (Section
3.2) enables the injected packets to be timely transmitted
without staying in buffers of the injection port for a long time,
diminishing the benefits of implementing a large number of
VCs in the injection port. In order to reduce overhead, we do
not increase the number of VCs in the injection port.

3.2 Resolving Local Contention
The ALPHA router architecture is able to identify the
upcoming local contention at the crossbar switch, and resolve
it by optimally selecting traffic routes. This local contention
resolving function is achieved in three steps. (1) Calculate
all possible output ports corresponding to available routes
of an incoming packet. We adopt O1TURN [44] multipath
routing algorithm because it provides near-optimal worst-
case throughput and does not incur long latency due to either
increased packet hops or hardware complexity. (2) Collect the
output port information of all the VCs which are competing
for crossbar switch resources. (3) Make the routing decision
for the incoming packet based on the information from the
previous two steps, so that the chance of local contention is
minimized.

To complete these three steps, we further modify the
router architecture from Figure 6 to include modifications to
the VC State Table, the RC unit, the VA unit, and the SA unit
as shown in Figure 7. Additionally, new route selection and
switch allocation control schemes are introduced.
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Fig. 7: Modifications in ALPHA to resolve local contention,
on top of the router design of increasing injection band-
width. New modifications include extended VC State Table,
modified RC, modified VA, and modified SA.

3.2.1 Modification to VC State Table
As shown in Figure 7, since we are employing multipath
routing, the output port state field R in the VC State Table
is extended to R and R

′
to accommodate multiple output

ports. Besides, an additional state field S is required for route

identification purpose. Specifically, in a 2D mesh topology,
O1TURN multipath routing employs two minimal routes:
the XY route and the YX route. The state fields R and R

′

store the output ports for the XY route and the YX route
respectively. The state field S identifies whether XY route
or YX route is being utilized. For a newly injection packet,
the state fields R and R

′
are updated after RC pipeline stage,

while the state field S is updated after the route selection
process is finished in VA pipeline stage. For a packet passing
by, the state field S determines whether the output port
stored in R or the output port stored in R

′
is utilized.

3.2.2 Modification to Routing Computation
As opposed to the baseline router, ALPHA router calculates
the output ports of multiple routes for each packet in the RC
pipeline stage. Specifically, in a 2D mesh topology, ALPHA
router calculates the output ports of both the XY and YX
routes, and updates them to state fields R and R

′
in the VC

State Table. The output ports of the XY and YX routes can
be calculated simultaneously with symmetric logic. Hence,
modification to RC does not incur extra latency in the RC
pipeline stage.

3.2.3 Modification to Virtual Channel Allocator
Architecture and Algorithm Design: In the ALPHA

router, we add an XY/YX route selection unit to the VC
allocator in the baseline router. This unit performs a two-step
operation to select the right output port for each injected
packet, with the target of avoiding local contention. First, it
collects the output port information of all the VCs, which
have been granted next hop VCs and are competing for
crossbar switch resources. Second, it compares the collected
information from the first step with output port candidates
generated by the modified RC unit, and determines if
switching from the primary XY route to the YX route can
avoid the local contention at the crossbar switch. If so, the
injected packet is routed through the YX route. Otherwise,
the injected packet is still routed through the primary XY
route. The route selection algorithm is described in detail in
Algorithm 1.

Algorithm 1: Route selection at the injection port

1 v: the number of virtual channels per input port
2 d: the array recording out port occupation mask
3 procedure ROUTESELECTION( v, d )
4 for i← 1 to v do
5 if stage of ith VC = SA
6 d + out port of ith VC← 1
7 for i← 1 to v do
8 if stage of ith VC = VA
9 if d + xy out port of ith VC = 1

10 if d + yx out port of ith VC = 0
11 out port of ith VC← yx out port of ith VC
12 else out port of ith VC← xy out port of ith VC
13 end procedure

Circuit-Level Implementation: The VC allocator per-
forms matching between requests from the P×V input VCs
and P×V resources, subject to the constraint that any VCs in
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Fig. 8: Circuit-level implementation of VC Allocator in
(a) baseline router, and (b) ALPHA router with the route
selection unit.

the downstream routers requested by a given input VC at any
given time share the same output port. P is the number of
input ports in a router, while V is the number of VCs in each
input port. Figure 8(a) shows the circuit-level implementation
of the input-first two-stage VC allocator in the baseline router.
In the first stage, each input VC first determines which VC
at the downstream router to bid on through the V : 1 arbiter.
In the second stage, all the requests are forwarded through
DEMUXs to P×V : 1 arbiters to determine the requests that
have won VCs in the downstream routers. Grants for each
input VC are grouped and reduced to V -wide vector that
indicates the granted VC.

Figure 8(b) shows how the route selection unit fits into
the original VC allocator in the baseline router. The route
selection unit only applies to VCs in the injection port. The
VCs in other input ports remain the same as in the baseline
router in Figure 8(a). In the route selection unit, the output
port information of each VC is firstly collected by a bitwise-
OR gate, then compared with the output port information
out of both the XY route and the YX route of current VC.
Once a decision of whether utilizing the XY route or the YX
route is made, it serves as the control signal of the MUX to
forward the output port information of the utilized route to
the control end of the DEMUX.

The critical path of the added route selection unit is
from the VC allocation output of previous clock cycle to the
control end of the DEMUX. Synthesis result from Synopsys
Design Compiler shows that the propagation delay of the
route selection unit is 3% longer than the delay of the 2:1
arbiter at the first stage. Hence, the propagation delay of the
added route selection unit has been mostly overlapped by

the original first-stage arbiter.

3.2.4 Modification to Switch Allocator
Architecture and Algorithm Design: As the dimension

of the crossbar switch has increased, the number of requests
at SA increases. To process the possible extra request from
the injection port, the SA keeps searching for the second
valid request after finding the first valid request. In this way,
at most two requests from the injection port can be granted,
enabling more than one VC in the injection port to access the
crossbar switch in one clock cycle.

However, the arbitration could be unfair and lead to
performance degradation when there is only one valid
request from VCs in the injection port. In this case, the
only request in the injection port will be treated as both
the primary request and the secondary request, and sent
for allocation twice, giving it a better chance to win the
allocation than requests from other input ports. To avoid this
unfairness, ALPHA introduces a Single Request Detection
(SRD) unit, which monitors the number of valid requests in
the injection port, and disables the function of searching for
the second valid request when only one valid request exists.
The switch allocation algorithm is described in Algorithm 2.

Algorithm 2: Select SA requests at the injection port

1 v: the number of virtual channels per input port
2 round robin: arbiter’s round robin pointer
3 procedure SWITCHREQSELECTION( v, round robin)
4 r round robin← round robin
5 for i← 1 to v do
6 if stage of round robinth VC = SA
7 one req← out port of round robinth VC
8 round robin← i
9 break

10 round robin← (round robin + 1) % v
11 request cnt← 0
12 for i← 1 to v do
13 if stage of ith VC = SA
14 request cnt← reqeust cnt + 1
15 if request cnt > 1
16 for i← 1 to v do
17 r round robin← (r round robin - 1) % v
18 if stage of r round robinth VC = SA
19 two req← out port of r round robinth VC
20 break
21 end procedure

Circuit-Level Implementation: The switch allocator per-
forms matching between requests from the V input VCs at
each of the router’s P input ports, and available crossbar
slots, subject to the constraint that at most one VC per input
port can receive a grant. Figure 9(a) shows the circuit-level
implementation of the input-first two-stage switch allocator
in the baseline router. In the first stage, the V : 1 arbiter
determines a winner among all active VCs at each input
port. In the second stage, the winning VCs’ requests are
then forwarded to the appropriate output ports, where
P : 1 arbitrations take place among requests from different
input ports. Grants for each input port are grouped and
reduced to V -wide vector that indicates the winning input
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Fig. 9: Circuit-level implementation of switch allocator in (a)
baseline router, and (b) ALPHA router with the additional
V : 1 arbiter, the SRD unit, and (P + 1) : 1 arbiters.

VC. Furthermore, the outputs of the second-stage arbiters
directly drive the control signals to the crossbar switch.

Figure 9(b) shows the three modifications to switch
allocator in the ALPHA router architecture. (1) ALPHA
router implements an additional V : 1 arbiter in the first
arbitration stage to process the possible extra request from
the injection port. This additional arbiter shares the round
robin pointer with the original arbiter, however, has opposite
priority logic. Hence, if the original arbiter searches for the
valid request in the clockwise order, the additional arbiter
will search for the valid request in the counter-clockwise
order. In this way, at most two valid requests from the
injection port can be forwarded to the second arbitration
stage. (2) An SRD unit is added to monitor the number
of valid requests from VCs in the injection port. This unit
outputs logic 0 and masks the outputs of the additional
V : 1 arbiter through a bitwise-AND gate, when there is
only one valid request. (3) All the P : 1 arbiters in the
second arbitration stage are replaced by (P + 1) : 1 arbiters
due to increased crossbar switch dimension. The first two
modifications only apply to the injection port, while the third
modification applies to the entire SA.

Since the additional V : 1 arbiter has symmetric circuit
design as the original V : 1 arbiter, it does not incur extra
propagation delay. We synthesize the SRD unit and the (P +
1) : 1 arbiter with Synopsys Design Compiler, assuming
that P and V equal 5 and 2 respectively. Synthesis result
shows that the propagation delay of the SRD unit is 53%

shorter than that of the V : 1 arbiter at the first stage, and
the delay of the (P + 1) : 1 arbiter is 7% longer than that
of the original P : 1 arbiter at the second stage. The extra
delay of the (P + 1) : 1 arbiter does not affect the maximal
achievable operating frequency because switch allocator has
shorter propagation delay than VC allocator [36].

3.2.5 Deadlock-Free Design
Employing O1TURN multipath routing is prone to deadlocks
because all four turns are permitted, leading to potential
cycles on the link acquisition graph [45]. We utilize escape VC
[46] technique to resolve potential deadlocks. Other deadlock-
free techniques such as VC partitioning [47] and bubble flow
control [48] are also compatible with the ALPHA router
architecture.

3.3 Learning-Enabled Traffic Injection Control to Allevi-
ate Global Contention
The global contention problem in NoCs has been explored
in many previous works. Some works perform adaptive
routing to route traffic around the contention regions [37],
[41], [49], [50], [51]. Adaptive routing is less effective when
network load is high, as it does not throttle intensive traffic
injection at sources but rather works with the traffic that has
been injected into the network. Other works employ source
throttling when contention is detected [16], [40], [52], [53].
The challenges of source throttling lie in (1) identifying global
contention, and (2) adjusting the network load to achieve
optimal system performance.
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Fig. 10: The complete ALPHA router architecture with the
Learning-Enabled Injection Controller (LIC) designed to
resolve global contention.

To meet these two challenges, we implement a Learning-
Enabled Injection Controller (LIC) in each router as shown
in Figure 10. LIC acquires knowledge of system status by
extracting information from core, router input ports, and SA
unit. The collected information is then fed into a supervised
learning engine to (1) identify the global contention through
traffic analysis and prediction, (2) investigate the impact
of network load on system performance, and (3) optimally
adjust the traffic injection process. In the remaining part of
this section, we first describe a new metric named SA Grant
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Rate, which is used to indicate global contention. We then
explain the LIC architecture and the corresponding training
and inference processes. Area overhead and compute latency
are calculated in detail in the end.

3.3.1 Global Contention Indication
Previous works utilize multiple metrics to indicate con-
tention, including available buffers [37], available VCs [49],
output queue size [51], and starvation rate [16], [40]. We intro-
duce a new metric named SA Grant Rate, which is the ratio
of the number of granted SA requests (Ngranted SA request)
to the number of total SA requests (Ntotal SA request) as in
Equation 1. We utilize this metric because the crossbar switch
is the key shared network resource in the NoC. The SA Grant
Rate below threshold indicates contention at the crossbar
switch. The threshold is empirically set to 0.9. We analyze the
impact of threshold value on system performance in Section
6.

SA Grant Rate =
Ngranted SA request

Ntotal SA request
(1)

3.3.2 LIC Architecture
LIC utilizes a 3-layer feed-forward artificial neural network
(ANN), as shown in Figure 11, to realize supervised learning
based injection process control. The three layers are the
input layer, the hidden layer, and the output layer. I , J ,
and K represent the number of neurons in the input layer,
the hidden layer, and the output layer respectively. wi,j

represents the synapse weight between neuron i and j.
Input Layer: There are 10 neurons (I = 10) in the input

layer because we feed 10 different features to the ANN. The
features are normalized to be within the range of (0, 1).

Hidden Layer: We implement 8 neurons (J = 8) in the
hidden layer based on the trade-off between ANN accuracy
and implementation cost. Neurons in the hidden layer use
the Sigmoid function as the activation function.

Output Layer: The output layer consists of 3 neurons
(K = 3), each of which corresponds to a traffic injection
mode. Neurons in the output layer use the Relu function as
the activation function.

xI

xi

x1

wi,j(t) wj,k(t)i j k

yK

yk

y1

Input layer               Hidden layer             Output layer

...

......

...

...

...

1

1

1

I K

J

Fig. 11: The 3-layer feed-forward ANN architecture in LIC.

3.3.3 LIC Input Features
All the features that we have selected are listed in Table 1,
and categorized into five categories: (1) prior mode, (2) global
traffic, (3) local traffic, (4) CPU status, and (5) GPU status.
By exploiting features from these five categories, LIC can

adjust the traffic injection process with an awareness of core
microarchitecture, application execution status, and network
traffic load.

TABLE 1: Supervised Learning Features

# Category Feature

1 prior
mode maximal injection rate in previous epoch

2 global
traffic

X+ incoming tagged packet rate in YX route
X - incoming tagged packet rate in YX route
Y+ incoming tagged packet rate in XY route
Y - incoming tagged packet rate in XY route

3 local
traffic

local injection packet count
local SA Grant Rate

4 CPU
status

L1D cache miss count
L1I cache miss count
instruction count

5 GPU
status

L1 cache miss count
active warp count
coalesced data access count

Microarchitecture Awareness: We implement differen-
tiated LIC designs in routers attached to different types
of cores. Specifically, features from Category 1, 2, 3 and 4
are fed into LICs in routers attached to CPU cores, while
features from Category 1, 2, 3 and 5 are fed into LICs in
routers attached to GPU cores. We choose different features to
represent the run-time status of CPU and GPU cores because
of their distinct microarchitectures and programming models.
Additionally, we do not implement LICs in the routers
attached to MC nodes. This is because the MC nodes only
contain passive modules (memory controllers, cache banks,
etc.) and do not initiate communication.

Application Awareness: LIC takes run-time application
execution status into consideration when adjusting the traffic
injection process. Previous works [16], [40], [53] utilize
features in Category 4 or their combinations to represent
the run-time status of CPU cores. As shown in Category
5, in addition to L1 cache miss count, we introduce two
new features, namely active warp count and coalesced data
access count, to represent the run-time status of GPU cores.
Previous work [4] has employed the active warp count to
regulate GPU traffic. Furthermore, coalesced data access is a
unique and important feature to characterize GPU execution
[10], [54].

Traffic Awareness: The features in Category 2 and 3 rep-
resent the global and local traffic information respectively. In
order to extract more global traffic information, we propose
a light-weight piggy-back approach inspired by Internet-
based contention detection schemes [55], [56]. This approach
spreads contention information by selectively adding tags
to traffic packets. A packet is tagged when it traverses a
router whose SA Grant Rate is below a certain threshold. A
router acquires more knowledge of the global network traffic
by monitoring the ratio of tagged packets to total incoming
packets.

Precise Contention Quadrant Location: Prior works [16],
[40], [53] often apply source throttling without the knowledge
of precise contention location. By combining multipath
routing with the piggy-back approach, our design is able
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to determine the contention in each quadrant separately
and only throttle traffic going to quadrants with intensive
contention. Figure 12 demonstrates an example of how our
design determines the contention in the upper-right quadrant.
The tagged packets in XY route in the Y+ input port come
from the upper-half plane with blue dashed lines as in Figure
12(a). The tagged packets in YX route in the X+ input port
come from the right-half plane with red dashed lines as in
Figure 12(b). Contention in the upper-right quadrant then
can be determined by monitoring both the incoming tagged
packets rate in XY route in Y+ input port, and the incoming
tagged packets rate in YX route in X+ input port, as shown
in Figure 12(c).

R
X+X-

Y+

Y-

R
X+X-

Y+

Y-

R
X+X-

Y+

Y-

(a)                                  (b)                                 (c)

Fig. 12: Precise contention quadrant location enabled by the
multipath routing and the piggy-back approach in our LIC
design. R represents the router under examination.

3.3.4 LIC Output Modes
The three neurons in the output layer of the ANN in LIC
correspond to three control modes the LIC can choose from:
(1) turbo injection mode, (2) normal injection mode, and (3)
throttled injection mode. Each of the three neurons outputs
the probability of choosing the corresponding mode, and LIC
always chooses the mode with the highest probability value.

Turbo Injection Mode: This mode takes full advantage of
the increased injection bandwidth. In this mode, each router
transmits up to two injected flits per clock cycle.

Normal Injection Mode: In this mode, a router processes
the injected traffic in the same manner as the baseline router.
Only one injected flit can be transmitted per clock cycle.

Throttled injection Mode: We apply an 85% throttling
rate in this mode, which means a node is allowed to
inject traffic only in 15% of total clock cycles. We choose
this throttling rate in order to achieve optimal system
performance. The analysis of the impact of throttling rate on
system performance is presented in Section 6.

3.3.5 LIC Training Process
LIC performs the training process off-line with an epoch step
of 10K clock cycles. We randomly choose 200M execution
clock cycles out of each application in the Rodinia benchmark
suite. Since we select 12 applications from this benchmark
suite, there are in total 240K training samples. Each training
sample ( ~X, ~L) includes an input feature vector ~X and a
label vector ~L. The algorithm to create a label in a training
set is described in Algorithm 3. There are three possible
labels (1, 0, 0), (0, 1, 0) and (0, 0, 1), representing the turbo
injection mode, the normal injection mode, and the throttled
injection mode respectively. The synapse weights are updated
at each epoch step using back propagation algorithm [57].

Algorithm 3: Create label for a training set

1 ~M : mode in prior epoch
2 n: number of routers in the heterogeneous manycore
3 GR[n]: SA Grant Rate of each router in current epoch
4 p GR[n]: SA Grant Rate of each router in prior epoch
5 Cth: threshold value for contention identification
6 procedure CREATELABEL( ~M , n, GR, p GR, Cth)
7 for i← 1 to n do
8 if GR[i] > Cth

9 return ~L← downgrade from ~M
10 for i← 1 to n do
11 temp 1← temp 1 +GR[i]
12 temp 2← temp 2 + p GR[i]
13 avg GR← temp 1/n
14 avg p GR← temp 2/n
15 if avg GR > avg p GR

16 return ~L← ~M

17 return ~L← upgrade from ~M
18 end procedure

The learning gain factor η is set to be 0.01 because accuracy
is more important than the time cost in the off-line training
process. After the training process, the synapse weights are
stored within each router for inference purpose.

3.3.6 LIC Inference Process
We set the epoch step to 10K, which is smaller than in
other works [16], [40], [53], because (1) a smaller epoch
step helps to capture transient traffic patterns and apply
more precise traffic injection control, and (2) switching from
one injection mode to another does not incur any penalties.
Since the ANN compute latency accounts for a significant
portion of an epoch step, we utilize two separate sets of
epochs for monitoring features and applying traffic injection
control. LIC collects feature information at the end of each
monitor epoch, and applies a new injection mode at the
beginning of each control epoch. The offset between these
two sets of epochs, as shown in Figure 13, may lead to
performance degradation because the control decisions are
made on outdated feature information. A small epoch step
leads to more significant offset between two sets of epochs,
and hence more possible performance degradation. We set
the epoch step to 10K clock cycles. We analyze the impact of
epoch step size on system performance in Section 6.

Monitor Epoch i Monitor Epoch i+1

Control Epoch i Control Epoch i+1

Compute Latency

Fig. 13: The monitor epochs and control epochs are offset by
ANN compute latency.

3.3.7 Implementation Cost & Compute Latency
Implementation Cost: The implementation cost of LIC

consists of three parts: integer counters for feature moni-
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toring purpose, SRAM cells to store synapse weights, and
an arithmetic logic unit (ALU). We implement 14 16-bit
integer counters to monitor features. There are 104 synapse
weights in the proposed ANN architecture, each of which is
stored in a 16-bit SRAM cell in IEEE 754 half-precision binary
floating-point format. The ALU is designed to only perform
multiplication, addition and division operations as well as
activation functions.

Compute Latency: The ANN compute latency is calcu-
lated based on latency data of different arithmetic operations
provided by [58]. The floating-point multiplication, addition
and division operations consume 5, 3 and 44 clock cycles
respectively. The total ANN compute latency is less than
1.5K clock cycles.

4 METHODOLOGY

We implement a heterogeneous manycore system with
ALPHA routers in the Gem5-GPU simulator [59]. DSENT2.0
simulator [60] is used to calculate the power consumption
based on the data extracted from Gem5-GPU. We use
Synopsys Design Compiler and a 45nm open-source library
to evaluate the area overhead and calibrate the static power
consumption result acquired from DSENT2.0. Table 2 shows
the configuration of our baseline heterogeneous manycore
system.

TABLE 2: Baseline Architecture Configurations

40 shader cores, 0.7 GHz, SIMD pipeline width = 8
GPU core 48 warps/core, 32 threads/warp, 8 CTAs/core

48kB scratch memory/core, 32k registers/core

GPU cache L1 64kB/core, 4-way, 64B line size, LRU

CPU core 16 X86 cores, 2GHz

CPU cache L1 D-cache 64kB/core, 4-way, 64B line size, LRU
L1 I-cache 32kB/core, 4-way, 64B line size, LRU

Shared LLC L2 cache 1MB/MC, 8-way, 64B line size, LRU

DRAM DDR3 timing, 8 channels

NoC

8x8 2D mesh topology, dimension-order routing
wormhole flow control, 2-stage pipeline router
channel width = 128 bits, 2 VCs/virtual network
4 flit buffers/data VC, 1 flit buffer/control VC

Applications: In addition to utilizing multiple synthetic
traffic patterns, we evaluate the ALPHA router architecture
with 12 applications selected from the Rodinia benchmark
suite in Gem5-GPU simulator in full-system mode. The
Rodinia benchmark suite is specifically designed for het-
erogeneous systems, exhibiting various types of parallelism,
data-access patterns, and data-sharing characteristics.

Different Configurations for Evaluation: We compare
the ALPHA router design with five other router architec-
tures or NoC configurations. Baseline configuration, which
leverages multiple latency reduction techniques [36], [37],
[38], includes regular 2-stage wormhole routers. VIX [32]
configuration includes routers with virtual input crossbar
design, which attempts to improve switch allocation. DIP
[10] configuration includes routers with dual injection ports,
which is a straightforward approach to increase the injection
bandwidth. O1TURN [44] configuration evenly distributes
injected traffic to XY route and YX route. OSCAR [21]

specifically targets heterogeneous manycores. It dynami-
cally allocates network bandwidth to CPU and GPU traffic
through asynchronous batch scheduling. In our evaluation,
we use the same setup as in the original design to adjust the
batch composition ratio every 200K cycles.

5 EXPERIMENT RESULTS

We present and analyze the results acquired from both
synthetic traffic simulation and full-system simulation using
the Rodinia benchmark suite in this section. We also analyze
the area overhead of ALPHA router design as compared to
other five configurations.

5.1 Results from Synthetic Traffic Simulation
We compare the ALPHA router design with four other
configurations under different network load conditions
using multiple synthetic traffic patterns. The LIC in ALPHA
router is disabled to keep the comparison fair, as it may
affect the injection rate. OSCAR is not included in this
simulation as it is specifically designed for systems that
simultaneously involve multiple traffic patterns. The bit-
reverse and transpose traffic patterns are used to simulate
the intense point-to-point streaming traffic generated by GPU
cores, while the uniform-random traffic pattern is used to
simulate the relatively uniform-distributed traffic generated
by CPU cores. For each synthetic traffic pattern, we examine
both network latency and throughput, as shown in Figure
14.

We make four observations when examining the net-
work latency results from three different synthetic traffic
patterns. (1) ALPHA router design does not reduce network
latency when the network load is low, as compared to
other configurations. (2) ALPHA router reduces network
latency by 38% and 34% in bit-reverse traffic and transpose
traffic respectively, as traffic becomes more intensive and
network load reaches a similar level as in real heterogeneous
applications. The significant reduction in network latency
mainly results from the contention resolving function of the
ALPHA router design. (3) VIX delivers low network latency
when network load is high in uniform-random traffic because
it improves crossbar switch allocation. (4) DIP suffers from
high network latency in all three traffic patterns. This is
because it fails to timely transmit the injected traffic out of
the source router.

ALPHA router architecture achieves higher throughput
in all three traffic patterns compared to other configurations.
The throughput increases by 51% in bit-reverse traffic, 47%
in transpose traffic, and 10% in uniform-random traffic. In
bit-reverse and transpose traffic patterns, O1TURN provides
higher throughput than Baseline, VIX, and DIP, because
it exploits route diversity and hence postpones network
saturation.

5.2 Results from Full-System Simulation
We evaluate the ALPHA router design in full-system mode
with 12 applications selected from the Rodinia benchmark
suite. We compare the ALPHA router design with all
five other configurations by examining network latency,
throughput, execution time speedup, and energy efficiency.
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Fig. 14: Network latency and throughput results from synthetic traffic (a)bit-reverse (b)transpose, and (c) uniform-random.
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Fig. 15: Normalized network latency comparison between the ALPHA router design and other configurations. All network
latency values are normalized to network latency in the Baseline configuration.

Network Latency: We make four observations from the
network latency comparison between ALPHA router design
and four other configurations, which is shown in Figure
15. (1) ALPHA router design reduces network latency by
24%, 18%, 20%, 21%, and 24%, as compared to Baseline,
VIX, DIP, O1TURN, and OSCAR respectively. This is because
the ALPHA router effectively resolves both local and global
contention. (2) ALPHA performs extremely well in applica-
tions with high network load and hence high probability to
incur contention. These applications include SC, NW, MUM,
and BFS which suffer from high cache miss rate, as well
as BP and SRAD which involve a large volume of CPU-
GPU communication between the serial CPU phases and
the parallel GPU kernels. (3) O1TURN delivers the least
latency reduction, as evenly distributing traffic to multiple
routes does not necessarily help resolve contention and hence
reduce latency. (4) The reserved VC for CPU traffic in OSCAR,
though mitigates starvation of CPU traffic, leads to long
average latency.

Throughput: Throughput is defined as the average num-
ber of flits ejected from the network in a unit time period,
which is shown in Equation 2.

Throughput = (
n∑

i=1

Ni)× Texec−1 (2)

n is the number of routers in the network, Ni is the number
of flits ejected from router i, and Texec is the application
execution time. Figure 16 shows the normalized throughput
results for all configurations. ALPHA router design achieves
28%, 17%, 18% , higher throughput than Baseline, VIX, and
O1TURN configurations respectively. DIP outperforms VIX
and O1TURN, which conforms to our prior observation
that the limited injection bandwidth is the major obstacle
to throughput improvement. The performance difference
between DIP and ALPHA results from the fact that ALPHA
utilizes the increased injection bandwidth more effectively
by resolving local contention.

Execution Time Speedup: The execution time speedup
is obtained by calculating the ratio of the application exe-
cution time of the Baseline configuration to the application
execution time of other configurations (VIX, DIP, O1TURN,
OSCAR, and ALPHA). The execution time speedup of the
Baseline configuration itself is always 1. As shown in Figure
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Fig. 16: Normalized throughput comparison between the ALPHA router design and other configurations. All throughput
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of the Baseline configuration itself is always 1.
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Fig. 18: Normalized energy efficiency comparison between the ALPHA router design and other configurations. All energy
efficiency values are normalized to energy efficiency in the Baseline configuration.

17, the ALPHA router design achieves up to 22% execution
time speedup as compared to other configurations. In
applications including intensive CPU execution phases such
as KM and NW, the speedup mainly comes from network
latency reduction. In some other applications that offload
execution to GPU cores such as HS and SC, the speedup
mainly comes from throughput improvement. There are
also applications which involve both serial CPU phases and
parallel GPU kernels (BP, SRAD, etc.). Both latency reduction
and throughput improvement contribute to execution time
speedup in these applications in the ALPHA router design.
OSCAR achieves execution time speedup by allowing critical
packets such as CPU packets to be timely transmitted to their
destinations.

Energy Efficiency: We define energy efficiency as the
reciprocal of energy consumption of running an application,
which is shown in Equation 3.

Energy Efficiency = [(Pstatic +Pdynamic)× Texec]−1 (3)

Pstatic and Pdynamic are static and dynamic power consump-
tion respectively, and Texec is the application execution time.
Figure 18 shows the energy efficiency measurements for
all configurations studied and normalized to the Baseline
configuration. The ALPHA router design improves energy
efficiency by 19%, compared to the Baseline configuration,
while the maximal energy efficiency improvement of other
configurations is 10% (DIP). The energy efficiency improve-

ment of the ALPHA design results from both reducing
execution time and alleviating local and global contention.

5.3 Area Estimation
We estimate the router area in different configurations using
Synopsys Design Compiler and a 45nm open-source library.
Table 3 lists the area of each router module and the overall
router area for different configurations. There is modest
mismatch between the sum of the area of all router modules
and the overall router area, depending on the employed
place and route strategy. ALPHA router design incurs 5.4%
area overhead compared to the Baseline configuration, due to
modifications to the RC unit, the VA unit, the SA unit, and the
crossbar switch, as well as the additional LIC. However, the
area of ALPHA router is still 5% and 10% smaller compared
to VIX and DIP configurations respectively. This is because
we keep our designs of increasing injection bandwidth and
resolving local contention light-weight. O1TURN configura-
tion incurs the least area overhead as it only involves limited
modifications to the RC unit and the VA unit.

6 DESIGN ANALYSIS

In this section, we examine the performance of the ALPHA
router in detail, and explain several critical design choices.

Contention Resolving Function: Both DIP and ALPHA
increase the injection bandwidth as compared to the Baseline
configuration. We examine the network contention in DIP
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TABLE 3: Area Estimation

Area [mm2]

Configuration Flit Buffer/Logic RC Unit VA Unit SA Unit Crossbar VC Table LIC Batch Scheduling Total Increase by %

Baseline 0.1860 0.0004 0.0091 0.0046 0.0178 0.0012 - - 0.2303 -

VIX 0.1860 0.0004 0.0091 0.0092 0.0356 0.0012 - - 0.2556 11.0%

DIP 0.2232 0.0004 0.0091 0.0055 0.0178 0.0012 - - 0.2710 17.7%

O1TURN 0.1860 0.0009 0.0093 0.0046 0.0178 0.0012 - - 0.2321 0.78%

OSCAR 0.1860 0.0004 0.0091 0.0058 0.0178 0.0012 - 0.0064 0.2367 2.78%

ALPHA 0.1860 0.0009 0.0094 0.0055 0.0214 0.0012 0.0173 - 0.2427 5.38%
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Fig. 19: The SA Grant Rate comparison in DIP and ALPHA.
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Fig. 21: Geometric mean of execution time with different SA
Grant Rate threshold Cth, normalized to Cth = 1.

and ALPHA by analyzing the SA Grant Rate shown in Figure
19, and make two observations. (1) Increasing the injection
bandwidth leads to intensive network contention, as the
geometric mean of SA Grant Rate in DIP drops to around
87%. The SA Grant Rate is relatively high in applications
with low network load such as LC and KM, while it is low
in applications with high network load such as BP and HW.
(2) The contention resolving design in ALPHA is effective,
because the SA Grant Rate in ALPHA is 7% higher than
in DIP. ALPHA performs well in applications with high
network load. For example, ALPHA achieves 15% and 11%
higher SA Grant Rate than DIP in BP and HW applications
respectively.

Injection Mode Breakdown: Figure 20 shows the break-
down of injection modes in ALPHA design in different
applications. We capture the ratio of the number of clock
cycles utilized by each injection mode to the total application
execution clock cycles. The turbo injection mode is frequently
used in most applications, indicating the necessity of increas-
ing injection bandwidth. The throttled injection mode is
barely used in applications such as LC and LUD. These
applications either involve a high fraction of CPU execution
or have low cache miss rate. Some other applications (HS,
MUM, and BFS, etc.) frequently use the throttled injection
mode to reduce network load and hence avoid intensive
network contention.

SA Grant Rate Threshold: A router is considered con-
gested when its SA Grant Rate is below a threshold Cth in the
ALPHA design. We evaluate the impact of this threshold Cth
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Fig. 22: Geometric mean of execution time with different
throttling rate, normalized to throttling rate of 0.97.

on system performance, and observe that the optimal system
performance is achieved when the threshold Cth is set to
0.9, as shown in Figure 21. A small Cth may not be sensitive
enough to identify contention, while a large Cth limits the
benefit of utilizing the increased injection bandwidth.

Throttling Rate in Throttled Injection Mode: We also
examine the impact of throttling rate in the throttled injection
mode on system performance. The optimal system perfor-
mance is obtained when the throttling rate is set to 0.85 as
shown in Figure 22. This throttling rate effectively reduces the
network load and avoids contention while incurring minimal
negative impact on system performance in the throttled
injection mode.

LIC Epoch Size & Hidden Layer Neuron Count: We
evaluate the impact of the LIC epoch step size on system
performance and present the results in Figure 23(a) (normal-
ized to the 10K epoch step size case). The optimal system
performance is obtained when the LIC epoch step size is
10K . Implementing more neurons in LIC hidden layer leads
to system performance improvement at the cost of large LIC
area. From figure 23(b) (normalized to the 6 neurons case),
we observe that implementing 8 neurons has a good balance
between system performance and area overhead.

LIC Effectiveness: We compare the proposed LIC with
another global contention identification mechanism named
HAT [53]. To keep the comparison fair, HAT is implemented
on top of the design described in Section 3.2 and Figure 7. We
extend the range of throttling rate to adapt to the increased
injection bandwidth while maintaining the adjustment epoch
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size of 100K cycles as in [53]. Figure 24 shows that ALPHA
achieves 3.6% execution time reduction as compared to HAT.
ALPHA outperforms HAT for several reasons: (1) ALPHA ad-
justs injection rate at a finer time interval because it includes
neither centralized control nor complicated computations;
(2) ALPHA’s injection rate control is on per-core basis while
HAT applies a universal injection rate to all throttled cores;
and (3) ALPHA can identify the contention in each quadrant
separately and only throttle traffic going to quadrants with
intensive contention.

7 RELATED WORK

Increase Throughput: Prior works mainly focus on
optimizing the crossbar switch allocation scheme to improve
throughput [26], [28], [61]. These works usually involve
complicated allocator design such as the iterative allocator
[27] or wavefront allocator [29]. Rao et al. [32] propose to
improve the crossbar switch allocation by feeding more SA
requests to the allocator. Other works improve throughput
by enhancing the injection process [10], [11]. Xue et al. [62]
improve throughput by exploiting user-cooperated network
coding. We observe that the limited injection bandwidth is
the major obstacle to throughput improvement, and propose
a light-weight design to tackle this obstacle.

Reduce Network Latency: Conventional works have
concentrated on reducing the transfer latency by reducing
the number of hops [33], [34], [35], [63] or overlapping router
pipeline stages [36], [37], [38], [64]. Monemi et al. [65] apply
some latency reduction techniques to their NoC prototype
development. Prior latency reduction techniques are effective
when network load is relatively low. We observe that the
network load is usually high in heterogeneous manycores
and the contention latency takes up a significant portion of
the overall network latency. We propose multiple contention
resolving techniques to reduce the contention latency, hence
reduce the overall network latency.

Multipath Routing: Multipath routing has been widely
explored in the networking community [44], [66]. Tang et
al. [67] propose the repetitive turn model, which combines

multiple routing algorithms with low routing pressures, to
improve network performance. Murali et al. [68] propose a
multipath routing technique with the in-order guarantee by
implementing a lookup table at the switch of reconvergent
nodes. Yang et al. [69] propose a simultaneous dual-path
routing algorithm, which is beneficial when transmitting
large-size packets. The multipath routing scheme we have
employed in this work differs from previous schemes because
(1) we select a route based on the local contention information
instead of evenly or randomly distributing traffic to all
available routes, and (2) the employed multipath routing
scheme yields maximal benefit only when combined with
the increased injection bandwidth.

Learning-Enabled NoC Design: Multiple machine learn-
ing techniques have been introduced to perform design trade-
off or predict traffic in NoCs. These works target to achieve
high power efficiency [70], [71], [72], [73], [74], [75], [76],
and enable fault-tolerant design [74], [77], [78]. Xiao et al.
[79] exploit neural network and reinforcement learning to
optimize task mapping in a heterogeneous system. Qian et
al. [80] use kernel-based support vector regression method
to predict the NoC performance. We apply the supervised
learning technique to detect the global contention through
traffic analysis and prediction, and adaptively select injection
mode to optimize system performance.

8 CONCLUSION

The NoCs for heterogeneous manycores are expected to be
optimized for the combined traffic from latency-sensitive
CPUs and throughput-sensitive GPUs and accelerators. We
extensively analyze the characteristics of the combined traffic,
and observe that (1) the limited injection bandwidth is the
major obstacle to throughput improvement, and (2) the
latency due to local and global contention over the shared
network resources takes up a significant portion of the overall
network latency. Based on our observations, we propose
ALPHA, a NoC router design that is simultaneously opti-
mized for throughput and latency performance in heteroge-
neous manycores. ALPHA increases the injection bandwidth
through architectural modifications to the injection link, the
crossbar switch and the buffer organization in the injection
port of the router. ALPHA resolves the local contention by
combining a contention detection design with multipath
routing. Furthermore, ALPHA implements a supervised
learning engine to detect the global contention through
traffic analysis and prediction, and alleviate it by adaptively
adjusting the traffic injection process. Our simulation results
show that the ALPHA router outperforms the baseline router
and other state-of-art router designs in terms of latency,
throughput, execution time speed and energy efficiency.
We conclude that ALPHA is an effective router design for
heterogeneous manycores.
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