
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XX 2021 1

SecureNoC: A Learning-enabled,
High-performance, Energy-efficient, and Secure

On-chip Communication Framework Design
Ke Wang, Student Member, IEEE, Hao Zheng, Student Member, IEEE, Yuan Li, Student Member, IEEE,

Ahmed Louri, Fellow, IEEE

Abstract—We propose SecureNoC, a learning-based framework to enhance NoC security against Hardware Trojan (HT) attacks while
holistically improving performance and power. The proposed framework enhances NoC security with several architectural innovations,
namely a per-router HT detector, multi-function bypass channels (MBCs), and a lightweight data encryption design. Specifically, the
threat detector uses an artificial neural network for runtime HT detection with high accuracy. The MBCs consist of a router bypass route
and reconfigurable channel buffers which can efficiently isolate malicious nodes and reduce power consumption. The proposed data
encryption design adapts to diverse traffic patterns and dynamically deploys novel lightweight encryption techniques for desired
security goals with improved latency. Additionally, to balance the trade-offs and handle the dynamic interactions of the proposed
dynamic designs, a proactive deep-Q-learning (DQL) control policy is proposed to simultaneously provide optimized NoC security,
performance, and power consumption. Simulation studies using PARSEC benchmarks show that the proposed SecureNoC achieves
36% higher HT detection accuracy over state-of-the-art NoC security techniques while reducing network latency by 39% and energy
consumption by 46%.
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1 INTRODUCTION

A S technology scales, Network-on-Chip (NoC) architec-
tures [1], [2], have emerged as the prevailing com-

munication fabric for manycore architectures. However, as
computing resources are dynamically shared, NoCs are
becoming increasingly vulnerable to security threats [3]–
[15]. In NoCs, maliciously implanted Hardware Trojans
(HTs) [16]–[25] have been shown to destruct NoC func-
tionality, degrade NoC performance, leak information, and
covertly transmit data.

A large body of work has been devoted to secure NoCs
against HTs from three major aspects, namely HT detection,
HT mitigation, and data encryption [16]–[24]. Prior threat
detection techniques [3], [5], [19], [21], [24] monitor NoC
attributes and detect malicious components by capturing
abnormal attribute values (e.g., injection rate, buffer/link
utilization, and latency) that far exceed a manually designed
threshold. The threshold values, if not carefully selected, can
result in inaccurate detection and performance penalties.
For HT mitigation, existing designs [11], [12], [24] separate
the shared NoC resources (e.g. virtual channels and com-
munication paths) to isolate the HT-infected routers. These
techniques can provide non-interference transmissions but
inevitably restrict the NoC utilization. Conventional data
encryption methods [15], [26]–[28] consist of complex com-
putations and incur additional traffic for broadcasting pub-
lic keys and sharing private keys, which can result in further
network latency and power overheads.
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In this paper, we propose SecureNoC, a learning-based
design framework consisting of architectural and algorith-
mic designs to enhance HT detection, threat mitigation, and
data encryption in a holistic manner. We also intend to
use machine learning algorithms to optimize the dynamic
behavior of the proposed design and provide improved per-
formance and power, as compared to existing techniques.
The major contributions of this paper are as follows:

• Improved Threat Detection Design: We propose ar-
chitectural enhancements to the conventional router
to improve NoC security with accurate threat detec-
tion. The proposed threat detection hardware uses
an artificial neural network to accurately identify
the HT-injected faults in the transmitted packets and
detect HT-infected routers at runtime.

• Improved Channel Design: We propose to miti-
gate HT attacks with a multi-function router by-
pass channel (MBC) design to route packets and
avoid HT-infected routers. The proposed MBC uses
a simple switch logic design for reduced network la-
tency and power consumption. Additionally, recon-
figurable channel buffers, which can be configured as
buffers or repeaters, are implemented at inter-router
channels to improve network throughput.

• On-demand Lightweight Data Encryption Design:
We propose a novel data encryption methodology
for on-chip communication named semi-private key
encryption (SPK) for data protection. The SPK uses
a secret sharing technique for data encryption to
reduce the overhead of encryption and improve per-
formance.
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Fig. 1. HT attack model. The packet is transmitted from the HT-free
source router to the HT-free destination router via an HT-implanted
intermediate router.

• Learning-based Control Policy Design: We propose
to use deep Q-learning (DQL) to balance the trade-
offs and handle the dynamic interactions of the
proposed dynamic hardware designs, with the goal
of holistically optimizing security, performance, and
power consumption. Specifically, the per-router DQL
agents learn from the dynamic interactions between
the proposed reconfigurable hardware components
and the entire NoC environment to evolve an optimal
control policy that selects the most suitable operation
mode at runtime.

We evaluate the proposed SecureNoC design using
GEM5 [29] simulator with PARSEC benchmarks on an
8 × 8 2D mesh network. Simulation results show that
SecureNoC improves HT detection accuracy by 36% and
provides advanced data protection over state-of-the-art NoC
security techniques [3], [12] while reducing end-to-end net-
work latency and energy consumption by 39% and 46%,
respectively.

2 BACKGROUND AND MOTIVATION

Fig. 1 shows packet transmission and the related HT attacks
in an 1 × 3 on-chip network. The figure shows an HT-free
source router (green), an HT-free destination router (green),
and an HT-infected intermediate router (red). The network
interface transforms data generated from the processing
cores into packets that consist of multiple flits and inject
those flits into the associated routers for transmission. The
routers and inter-router links comprise the NoC. Before
transmission, the plain-text of sensitive data is first en-
crypted and turned into cipher-text before being injected
into the network. Following that, the network interface gen-
erates a packet and injects it into the NoC for transmission.
The ciphertext is decrypted at the destination router to
recover the original data. In this section, we briefly describe
the HT attack model in NoCs.

2.1 Hardware Trojan (HT) Attack Model

Hardware Trojans (HTs) are intentional hardware alterations
of the design specification or the corresponding implemen-
tation. HTs are implanted during the IC design phase of
the circuits. After being implanted, the HTs usually remain
dormant to avoid being detected and are activated upon
internal or external triggering events. In NoCs, HTs are usu-
ally implanted in the routers. Fig. 1 shows the attack model,
in which a router is infected with a fault-injection HT.

Specifically, HTs can downgrade performance by intention-
ally injecting faults in packets and incurring retransmission
traffic to create network congestion which can significantly
disrupt traffic. Furthermore, the congestion can build up
excessive back pressure to the upstream routers and satu-
rate the communication channels, thus activating denial-of-
service attacks by causing the target router to exhaust scarce
resources. According to previous research [11], [14], [30],
[31], such resource exhaustion can lead to interference of
the transmitted packets of different regions and potentially
cause leakage of sensitive information through the side or
covert channel effects.

In this paper, we focus on the attack model in which the
HT-implanted router insert faults into transmitted packets
to inject extra traffic into the network to cause network
congestion [6], [11], [12], [32]. We assume the HTs are simple
and only able to inject errors into the transmitted packets.
In other words, the HTs neither are capable of processing
a large amount of data nor altering the functionalities of
the HT detection module (e.g. learning the parameters of
the Detect-ANN), since adding such functionalities is power
and area consuming, which makes the HTs easier to be
detected by BIST. However, the HTs can randomize the ratio
of the injected faults, so that the characteristic of the altered
NoC attributes can not be captured easily. In this paper,
existing HTs [7]–[9] with different manufacturing variabil-
ity are implemented in some of the routers. Specifically,
these implanted fault-injection HTs remain dormant until
triggered. The triggering events are runtime temperature
(router chip temperature) [7], local buffer utilization [8], and
operation voltage shifting variation [9].

2.2 Data Encryption Schemes

Encryption methods are used to generate cipher-text to
replace plain-text for data protection. Encryption methods
can be generally categorized into symmetric encryption
and asymmetric encryption. Symmetric encryption uses the
same secret key for both encryption and decryption. The
key for each data transmission should be unique to ensure
security. Specifically, the encryption algorithm produces the
cipher-text by taking the key and plain-text as inputs. Sim-
ilarly, the decryption algorithm uses the ciphertext and the
same key to recover the plain text. Asymmetric encryption,
on the other hand, uses a set of public keys that are known
by all entities. Each router is assigned to a unique public key,
and all public keys are stored in a public-key-mapping table
which can be accessed by all routers. The source encrypts
the data using the destination router’s public key, and the
ciphertext can only be decrypted by the destination router
using a unique private key associated with its public key.

However, in NoC, both encryption methods have poten-
tial security vulnerabilities during public key sharing and
private key transmission. Conventional complex key shar-
ing techniques solve these problems at the cost of significant
computational overhead and power consumption [33]. Con-
sequently, prior works [15], [28] have deployed lightweight
encryption schemes. These techniques provide data protec-
tion functionalities, such as cryptographic hash function,
message authentication, and random number generation
to build a data encryption system with reduced overhead.
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Fig. 2. Microarchitecture of the proposed SecureNoC design. The figure
shows (a) the security-enhanced router design, (b) the proposed multi-
function bypass channels (MBCs), and (c) the on-demand light-weight
data encryption design.

However, these solutions still follow the traditional en-
cryption method that requires multiple rounds of complex
operations performed on the plain-text and secret keys, thus
incurring overheads in terms of power and timing.

3 PROPOSED SECURENOC ARCHITECTURE

We propose SecureNoC for secure and efficient NoC ar-
chitecture consisting of architectural and algorithmic en-
hancement techniques, as shown in Fig. 2. On the hardware
side, Fig. 2(a) shows the enhanced router where we add a
per-router threat detection hardware (blue box inside the
router) for accurate runtime HT detection. We also deploy
channel buffers [34]–[36] as inter-router buffers for perfor-
mance enhancement and power savings. We propose new
multi-function bypass channels (MBCs) shown in Fig. 2(b)
to mitigate HT attacks. These channels are composed of
bypass links (red lines) and an MBC controller, which is
responsible for traffic flow control and configuration of
the channel buffers. On the algorithm side, we propose an
on-demand data encryption method with lightweight data
encryption algorithms to protect sensitive information with
minor overheads, as shown in Fig. 2(c).

3.1 Per-router Threat Detection Hardware
We propose a per-router threat detection hardware which
consists of an artificial neural network, named D-ANN [32],
for HT detection. Using D-ANN, the threat detection hard-
ware is able to learn from runtime network activities and
automatically identify HT-infected routers. Specifically, the
threat detection hardware first monitors and extracts the
values of local runtime attributes from the on-chip sensors.
A total of twelve NoC attributes are used, which include
buffer utilization (the number of occupied virtual channels)
for each input port (total of 5), link utilization (the value
of input-flits per cycle) for each input port (total of 5), and
packet injection rate, and local operation temperature. Those

attribute values will be fed into the input layer of the D-
ANN. Using the input values, D-ANN then calculates a
label, either HT-infected or HT-free, as the HT detection
result. Afterward, the threat detection hardware forwards
the detection result to the proposed DQL module (Sec. 4.2)
for operation mode selection.

The proposed D-ANN is a fully connected neural net-
work, which is composed of three layers, namely an input
layer, a hidden layer, and an output layer. We explore twelve
NoC attributes as inputs, which include buffer utilization
(the number of occupied virtual channels) for each input
port (total of 5), link utilization (the value of input-flits
per cycle) for each input port (total of 5), and packet in-
jection rate, and local operation temperature. The hidden
layer, which consists of several ReLU neurons, uses all of
these attribute values and calculates the output values of
the D-ANN. The number of ReLU neurons in this layer
directly impacts the classification accuracy and computa-
tional/storage overhead. We implement 30 neurons in this
layer for the best accuracy/cost ratio (detailed discussion
is given in Sec. 5.4). The output layer consists of two
neurons. The first neuron has an output value that equals
0, which means the local router is HT-free, and the second
neuron has an output value that equals 1, which means the
router is HT-infected. To identify the HT-infected routers
promptly while reducing the computational overhead, the
proposed D-ANN gathers network attributes and calculates
the detection results every 5000 clock cycles.

The objective of the proposed threat detection hardware
design is to identify the anomaly behaviors (induced by the
HTs) by observing runtime NoC activities (the values of a
number of runtime attributes) using the D-ANN. Therefore,
we create two data sets for training the D-ANN. One of
the two data sets is the training set that consists of the
”normal” runtime attribute values with no implanted HTs.
The attribute values are captured at each time step. The
other set consists of the ”abnormal” runtime attribute values
with implanted HTs. Specifically, first, synthetic and real
applications from the PARSEC benchmark (blk, dedup, fre,
and swa) are executed in a fully HT-free system for five
training rounds while the runtime attributes used in the D-
ANN are monitored and recorded. The D-ANN takes these
attributes as inputs and calculates the weights as the outputs
are all labeled as ”HT-free”, meaning the output neuron is
the first neuron (the output value is 0) for all inputs for this
data set. Then, the same applications are executed for 20
rounds with HT-implanted routers. The HTs inject transient
faults into packets and cause network congestion. During
this phase of application execution, runtime attributes are
recorded and fed to the input layer of the D-ANN, and
the HT-infected routers are labeled in the output layer.
Specifically, for the routers where we injected HTs, we set
the output neuron of the data set of this phase to the second
neuron, and the output value is 1.

During the training process using the two data sets,
the D-ANN calculates the outputs using the input attribute
values. The calculated outputs will be compared to the
assigned output values, so that the error E of the D-ANN
model is obtained. The back-propagation algorithm is de-
ployed to use the error E to update the weights Wij for
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D-ANN, using the following equation:

Wnew
ij = W old

ij − α · ∂E

∂W old
ij

(1)

E is calculated by subtracting the actual output calcu-
lated by the neural network and the assigned value (0 for
HT-free, and 1 for HT-infected). We update the weights
in D-ANNs until they converge. To explore the training
sets for a better training result, the HT-infected routers are
randomly selected at the beginning of each round. Each
round consists of 20 full executions of each synthetic traffic
and real application, respectively.

One possible design constraint of the proposed D-ANN
is the robustness of the offline-trained model. To tackle this
issue, we train the proposed D-ANN with both synthetic
traffic and a number of real benchmarks. Moreover, we also
train the D-ANN multiple rounds with randomly implanted
HTs with the goal of comprehensively covering sufficient
communication behaviors. Additionally, the inaccurate de-
tection of HT-infected routers can lead to penalties such as
unnecessary router isolation, performance degradation, and
insecure data transmission. Thus, a trained model should
avoid false-positive results (that identify HT-free routers
as HT-infected) and false-negative results (that identify
HT-infected routers as HT-free). In this paper, both false-
positives and false-negatives can be mitigated by updat-
ing and correcting the threat detection results periodically.
Specifically, false-positives can be a problem when an HT-
free router is always labeled as HT-infected. In the proposed
design, even if the HT-free router is labeled as HT-infected
by mistake, the detection result will be updated at the next
time step. As the trained D-ANN has a high HT-detection
accuracy, the wrongly labeled router has a high chance to
be labeled as HT-free correctly at the next time step. By
doing so, the penalty of isolating that HT-free router will
be limited to one time step. Therefore, the false-positive
problem can be mitigated. False-negatives occur when the
HT is not activated and the router is labeled as HT-free,
which are common in conventional designs. The proposed
D-ANN resolves this problem by monitoring the runtime
NoC behaviors consecutively and providing HT-detection
results every 2000 cycles. As the D-ANN utilizes the average
attribute values within the time step, it can sensitively
capture the anomaly behavior of HT-infected routers, even
if the HTs are only activated for a short period. Therefore,
false-negatives are reduced.

3.2 Multi-Function Bypass Channels (MBCs)
We propose multi-function bypass channels (MBCs) to by-
pass traffic around HT-infected routers. We also propose
to use tri-state buffers [34]–[37] in the inter-router channels
and remove a portion of router buffers to improve network
performance and reduce overall power consumption. The
design details are described next.

3.2.1 MBC Functionalities
According to the labeling results from D-ANN, the transmit-
ted packets, whose source and destination are both HT-free,
are considered as high-security-demand packets, while the
packets whose source or destination router is HT-infected

are considered as low-security packets. For high-security-
demand packets, if no data encryption method is used,
it must be ensured that all the routers in the data path
should be HT-free. In this case, router bypassing can be
used to isolate the HT-infected router during transmission
and maintain network connectivity. For this, we propose
a multi-function bypass channel (MBC), as demonstrated
in Fig. 2. First, MBC integrates a set of bypass links to
isolate the HT-infected routers. Additionally, we imple-
ment a number of reconfigurable inter-router MBC channel
buffers for the use of MBC to improve network throughput.
Additional benefits of the MBCs include providing on-
demand flit buffering, and enabling router power-gating
to save power. Each MBC channel buffer is constructed
with tri-state transistors [34] which can be configured as
channel buffers or repeaters for different use cases. For
example, when the router is HT-infected and to be power-
gated for reduced power, the bypass links can be used
for transmitting packets, and the MBC buffer can be con-
figured as on-demand link storage buffers for improved
throughput. To perform non-interference transmission be-
tween high-security packets and low-security packets for
improved security, the high-security packets can use MBC
to bypass the HT-infected routers, while the low-security
packets are transmitted through the router logic of the HT-
infected routers. Compared to existing solutions that stall
low-security packet transmission while transmitting high-
security packets [11] or limit the throughput of different
traffic regions [12], the proposed design fully utilize network
resources thus minimizing performance losses. At last, we
implement an MBC controller for configuring the MBC
buffers and controlling the activation of the bypass links.

Specifically, MBC connects all the input and output
ports of an isolated router with the bypass links and a
simple switch logic using MUXes and DEMUXes. The pro-
posed bypass links allow the high-security packets to be
propagated using a round-robin scheme without traversing
the HT-infected router logic. Low-security traffic, on the
other hand, can still use the router to better utilize NoC
resources. Note that the bypass links add five 128-bit data
paths to the conventional design. This will ensure the same
bisection bandwidth when the router is bypassed and also
increase the bisection bandwidth when the bypass links are
used along with the router links. The overheads of these
additional links are demonstrated in Sec. 5.5. The mode
selection of the channel buffers is controlled by the MBC
controller with a 1-bit mode-selection signal. The benefit
of using the reconfigurable channel buffers is as follows.
First, MBC channel buffers can buffer the high-security
demand flits that bypass the HT-infected router to improve
MBC throughput. Second, for high traffic loads, the channel
buffers can be used to buffer the incoming flits in addition
to router buffers. Compared with router buffers, the chan-
nel buffers significantly reduce power consumption with
negligible latency overhead [37]. Third, for moderate traffic
loads, the channel buffers can be configured as repeaters to
reduce network latency. Finally, when the traffic load is low,
the under-utilized router can be power gated. In this case,
with the additional channel buffers, MBC allows multiple
sporadic flits to be propagated without first powering on the
corresponding router, which can achieve significant power

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2021.3138279

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. XX, XX 2021 5

savings. The dynamic selection of MBC functionalities is
explained in Sec. 4.1. Next, we detail the buffer allocation
for both channel buffers and router buffers, as well as the
flow control algorithm.

3.2.2 Channel Buffer Allocation and Flow Control

In this paper, we use the unified dynamic buffer allocation
scheme [38] for both MBC channel buffers and router buffers
to maximize network throughput. The proposed per-router
buffer allocation table records the routing information of all
five input ports of the corresponding router and can be
accessed consistently, even when the router is bypassed,
isolated, or power-gated. The proposed unified dynamic
buffer allocation table is constructed by adding several new
entries to the existing virtual channel (VC) state table [39].
The entries of the proposed buffer allocation table include
the VC identifier (VC), read pointer (RP), write pointer
(WP), allocated output ports (OPX and OPY), output VC
(OVC), state (ST), credit count (CR), and four MBC-related
entries, namely an input port identifier (Port) that indicates
the input port ID of the incoming flit, a downstream router
status indicator (DRS) that records the availability of the
downstream router, a channel buffer pointer (CBP), and a
channel buffer credit indicator (CBC).

The flow control using the proposed buffer allocation
table is as follows. First, the routing information in the
header flit is extracted and used for route computation
and virtual channel (VC) allocation. When the router is
HT-free and available for packet transmission, the buffer
allocation table assigns an unoccupied VC to the header
flit. When a free VC slot is assigned to the header flit of a
packet, the credit count (CR), which records available router
slots (including router/VC buffers and channel buffers), is
updated. The allocated VC slot, along with the computed
OPX/OPY and OVC, are recorded in the buffer allocation
table. Afterward, the body flits use the recorded VC of the
header flit and the corresponding output information to
complete the packet transmission. It is noteworthy that if
the router is bypassed, isolated, or power-gated, incoming
packets can still be transmitted with no problem following
the same process, as the buffer allocation table is accessi-
ble. Since the simple switch design using MUX/DEMUX
has limited throughput, a routing mechanism that avoids
transmitting intense traffic through bypass channels should
be applied. Moreover, to better utilize network resources,
especially the isolated routers, a different routing algorithm
might be needed for the low-security packets. Thus, we
propose an adaptive routing algorithm [32] that intelli-
gently balances traffic loads with various routing algorithms
(O1TURN, West-First, and Negative-First) to avoid injecting
into bypass channels and optimize the worst-case through-
put of different NoC traffic patterns using various routing
algorithms [40]–[42]. The O1TURN routing dynamically ap-
plies XY or YX routing for each packet to better utilize the
network spatially under normal traffic loads. The West-First
and Negative-First restrict different types of turns that are
allowed and achieve lower latency and less dynamic power
consumption than O1TURN under intense traffic-loads [40].
The routers in the proposed design have multiple virtual
channels to avoid both protocol and routing deadlocks.

3.3 On-demand Light-weight Data Encryption using a
Semi-private Key Sharing (SPK) Method

In data-protected NoC systems, flits are encrypted before
being injected into the local router. Typical data encryption
methods consume excessive computation time and power
consumption due to the multi-round complex computa-
tions. For example, conventional AES encryption uses a 128-
bit secret key for a 128-bit flit and consists of 10 rounds
of computation, which can cause significant performance
degradation in resource-constraint NoC systems. Previous
works [15], [43] have reduced the overhead of the traditional
encryption techniques with reduced encryption rounds,
proposed smaller block/key sizes, or optimized hardware
designs. However, these techniques still have complex com-
putations that consume multiple clock cycles. Moreover, the
static use of these techniques can lead to additional costs
or security issues as described previously. For example,
deploying complex data encryption at every hop can result
in excessive power consumption as the packets injected by
the HT-infected routers need not to be protected. Similarly,
simple encryption that has reduced overheads might not be
sufficient for systems with multiple HT-infected routers.

To this end, we propose an on-demand light-weight
data encryption technique that adapts to diverse traffic
for optimized data protection while reducing power and
computational overheads simultaneously. Specifically, for
low-security traffic whose source or destination is detected
to be HT-infected by D-ANN, no encryption algorithm
is applied. For high-security-demand traffic, we propose
a lightweight encryption method called semi-private key
(SPK) encryption for data protection. The proposed SPK
is based on the secret-sharing theory. The proposed SPK
eliminates the multi-round complex computation of the
conventional AES and only requires a small number of
additions and multiplications. Moreover, by using a semi-
private key that is stored within each router, the proposed
SPK eliminates both the traffic for private key transmission
and the security vulnerability of using fully public keys as
described in Sec. 2.2.

In the proposed SPK, a single public key is used for both
encryption and decryption of all transmitted packets. We
use the secret sharing [44], [45] theory to only store a unique
share of the public key in each router, and the public key
can be recovered with multiple unique shares. The secret
sharing theory [44], [45] is based on the Lagrange interpo-
lating polynomial with a (t, n) threshold. A certain secret S
is shared by n participants in the system, each of which
keeps a unique secret shadow of S. The secret S can only be
recovered if at least t (t ≤ n) secret shadows are retrieved.
The secret sharing theory is proven to be absolutely secure
in the mathematical finite field [46]. Specifically, to protect
the secret S, first, a Lagrange polynomial is constructed as
follows:

L(x) = S+ a1 · x+ a2 · x2 + ...+ at−1 · xt−1 mod (p) (2)

where S is the secret. p is a pre-defined prime number which
is larger than S. Note that the degree of L(x) is (t − 1),
meaning that any attempt to reconstruct the polynomial
with less than t secret shadows will give the incorrect
polynomial with the wrong secret S.
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The secret shadow si, where i ∈ (1, t − 1), is then
created using different integer values of xi and calculating
the corresponding fi(x) values. Next, the value P and a
unique shadow s+i = (xi, fi(x)) is sent to each router. After
distributing the secret shadows, the Lagrange polynomial
L(x) is destroyed by deleting the secret S and coefficients ai,
where i ∈ (1, t− 1). To retrieve the secret S, at least t secret
shadows should be compromised. With t secret shadows, S
can be recovered using:

S = F (0) =
t∑

i=1

fi(x)
∏

1≤j≤t,j ̸=i(x− xj)∏
1≤j≤t,j ̸=i(xj − xi)

mod(p) (3)

In this paper, we use the same concept while extending
the (t, n) threshold to a set of (k, n) thresholds for different
routers to share the public key K in the NoC system.
The variables of Lagrange polynomial L(x) are randomly
selected, while the value of n equals the number of routers.
The computation of L(x) and the corresponding secret shad-
ows are completed in a least-utilized HT-free core. Later, the
secret shadows, or semi-private keys, are distributed to each
router. As each router only stores a share of the public key,
we call this method ”semi-private key sharing”. To retrieve
the original secret key S, the router needs to compromise
the other routers and gather at least k other secret shadows.

The selections of the polynomial and the variable t can
impact the network performance. For a larger t, the routers
in the NoC system need to gather more secret shadows,
which can result in increased traffic loads and additional
computation time. A smaller t, on the other hand, requires
fewer secret shadows to recover the secret key, thus may
pose security risks. To achieve the optimized data protection
with minimized overhead, we define the k value for each
router as k = di + 1, in which di is the degree of the router
Ri. The t−k secret shadows are stored locally, while k secret
shadows are distributed among other routers. For example,
in a 2-D mesh network, the k value for the routers in the
corners is 3. Similarly, the k values for the routers on the
edges and in the center of the mesh are 4 and 5, respectively.
Additionally, We only authorize the source and destination
router to gather the secret shadows from adjacent routers.
By doing so, the source router and the destination router
can gather sufficient secret shadows, and the HT-infected
routers are prevented from retrieving the secret key. Note
that the proposed D-ANN and MBC ensure that the HT-
infected router will not become the source or destination
for traffic with high security demands. Besides, as discussed
previously, there is no encryption or decryption needed for
low-security traffic, thus the HT-infected router is neither
authorized to acquire secret shadows from other routers nor
to get secret shadows from the key distribution phase.

According to information-theoretical entropy func-
tion [47], the entropy of the proposed SPK is H(S|ST ) =
H(S), which is perfect privacy for each transmission [48].
Therefore, SPK can fulfill data protection demands with
reduced overheads.

Fig. 3 shows an example of the secret shadow gathering
in the proposed SPK. The packet is transmitted from the
source router to the destination router, and the data path
is shown with blue arrows, using YX routing with an HT-
infected router located in the data path. Similar to the itera-
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SPK Key Sharing Packet Transmission

(a) (b)

Fig. 3. Examples of data encryption using SPK.The blue arrows show
the data path of the packet transmitted from the source router to the
destination router. The red arrows show the data transmission for shar-
ing secret key shadows.

tive operations of D-ANN, the secret shadows are created
and assigned in discrete time steps. At the beginning of
each time step, the Lagrange polynomial with a new public
key S is decided, and the secret shadows are transmitted
to each router, as shown with red arrows. During packet
transmission, the source and destination router first issue a
handshake signal to the adjacent router and selects one addi-
tional router in its X or Y direction using the XY/YX routing
algorithm. Subsequently, the source router gathers the secret
shadows and retrieves the secret key for encryption. The
encryption method used is a single-round XOR operation
with S for minimized overhead. Similarly, the destination
router can calculate the key and use it for decryption. As
described in Sec. 2.1, an HT-infected router might access the
secret shadows of the adjacent router through information
leakage at this stage. However, it is insufficient for secret
key recovery.

The use of SPK ensures data protection and eliminates
the multi-round complex computation of conventional en-
cryption methods and full-key transmission in state-of-the-
art solutions [15], [28]. The overheads of the SPK are induced
by key computation and transmission of the secret shadows.
Detailed performance analysis, in terms of security, power
consumption, and computation overheads, is presented in
Sec. 5.

4 DYNAMIC OPERATION MODES AND
LEARNING-BASED CONTROL POLICY

4.1 Dynamic Operation Modes

We propose three dynamic operation modes, each of which
has various security techniques and hardware configura-
tions. The operation modes will be selected and deployed
by each router independently and iteratively in a sequence
of discrete time steps, directed by a deep-Q-learning (DQL)-
based control policy. The proposed operation modes are
described as follows.

• Operation Mode 1: In this operation mode, the
router is power-gated, and the associated MBC by-
pass links are activated. When configured as such,
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the MBC channel buffers are configured to be on-
demand link storage for the incoming flits. This
mode is triggered when the router is underutilized
or when the corresponding router is detected as an
HT-infected router. In this case, the router is powered
off and isolated to significantly reduce overall power
consumption and provide network security.

• Operation Mode 2: In this mode, the bypass channel
is activated, while the router is not power-gated. In
this case, the MBC bypass links are used to provide
non-interference packet transmission. Specifically,
the bypass channel dynamically routes high-security
packets without traversing HT-infected routers, as
well as utilizing the bypassed routers to propagate
low-security packets without degrading network
performance. MBC channel buffers are configured
as flit buffers. This operation mode provides basic
network security as data protection techniques are
not deployed.

• Operation Mode 3: In this mode, the MBC bypass
links are disabled. The router switches its adaptive
encryption hardware to SPK. This operation mode is
beneficial when the transmitted data requires mod-
erate protection aside from non-interference packet
transmission. The MBC buffers are configured as
repeaters to reduce latency.

The three proposed operation modes work together to
comprehensively cover broad use cases with different traffic,
workload, and security requirements. The three operation
modes each has various security-enhancement techniques
and hardware configurations. Specifically, the first opera-
tion mode, which power-gates the HT-infected router, can
provide basic security features. This is beneficial when the
traffic load is low, as the power-gating feature can save
static and dynamic power consumption. However, if the
traffic load is high, as this operation mode only activates
the bypass links for data transmission, this operation mode
will lead to excessive network latency. Therefore, we design
the second operation mode, which allows the low-security
packets to be transmitted using the HT-infected routers.
This is beneficial to the network latency when traffic load
is high, while still providing basic security due to the non-
interference transmission. For the maximized security, we
propose the third operation mode with an additional data
encryption feature. This operation mode sacrifices perfor-
mance and power, as it induces additional timing and power
overheads for data encryption, for the highest level of data
protection. In summary, Operation Mode 1 is beneficial
when traffic load is low and basic security feature is re-
quired; Operation Mode 2 is beneficial when traffic load is
high and basic security feature is required; Operation Mode
3 is beneficial when maximum security feature is required.

The dynamic operation modes are independently yet
simultaneously selected by each router using a deep-
Q-learning (DQL)-based control policy demonstrated in
Sec. 4.2 at each time step, and the buffer allocation table
is updated accordingly. It is noteworthy that even though
the MBC configuration cannot be changed within a time
step, the encryption method (bypass-only or SPK) suggested
by the per-router DQL can be overwritten by the HT-free

cores on demand. However, this overwriting function is
disabled in this paper during design evaluations in Sec. 5.
As previously discussed, the proposed on-demand data
encryption and per-router power-gating/bypassing design
allows individual routers to deploy the most beneficial
strategy at any time step, thus achieving improvements on
performance metrics for the entire NoC.

4.2 Deep-Q-Learning (DQL)-Based Control Policy
We present a per-router deep-Q-learning (DQL)-based con-
trol policy to balance the trade-offs and select one of the
dynamic operation modes at runtime. DQL [49] is a type of
reinforcement learning [50] algorithm that learns from the
dynamic interactions between autonomous agents (routers)
and the environment (NoC system) and optimizes the router
control policy. In SecureNoC, each per-router DQL agent
interacts with the NoC system in a sequence of discrete time
steps t.

At each time step, per-router DQL agent monitors a set of
runtime network attributes and observes the current work-
ing status, named state s. With the given state s, the router
takes an action a by selecting an operation mode that will be
applied at the following time step. The selection of the action
a is directed by a trained policy, which indicates the long-
term return Rt of taking the action a. At the subsequent time
step, the router impacts the entire NoC system after taking
the selected action by incurring changes of NoC attributes
and performance metrics. Comparing the new performance
metrics to their previous values, the network will have a
system-level evaluation on the immediate benefit r of taking
the action a. The value r is used to update the long-term
return Rt for decision making in the future. Meanwhile, a
new state s′ is observed, and a new time step will start.

In DQL, the goal of the DQL agent is to learn a policy
that optimizes the agent’s long-term return, Rt, which is the
exponentially discounted sum of the immediate rewards of
all future time steps [?], [36], [51]–[53]. The return at time
step t is therefore defined as:

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1 (4)

The variable γ (where 0≤ γ ≤1) in this equation is a
discount rate which determines the impact of future rewards
on the total return: as γ approaches 1, the agent becomes less
near-sighted by giving increasing weight to future rewards.
The impact of γ on DQL is presented in Sec. 5.4.

In this paper, we use the deep-Q-learning algorithm [35],
[50], [54] to estimate Rt with an action-value function Q (s, a).
The Q-value represents the expected maximum long-term
return that the agent, starting in state s, follows the opti-
mal policy for all future actions. The design details of the
proposed DQL are presented as follows.

Action-Value Function and Deep-Q-learning In DQL,
we model the return R as follows. In this paper, a model of
the environment characterizes how the state of the environ-
ment changes as a result of an agent action, and the reward
that the agent receives after each action. The model is spec-
ified through a probability distribution p(st+1, rt+1|st, at).
Correspondingly, the agents compute an action-value func-
tion Qπ(s, a) that captures the return R they are expected to
receive in this model of the environment if they start in state
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s, take action a, and follow the policy π for the remaining
actions:

Qπ(s, a) = Ep{Rt|st = s, at = a, at+1:∞ ∼ π}
= Ep{rt+1 + γrt+2 + γ2rt+3 + ...

|st = s, at = a, at+1:∞ ∼ π}
= Ep{rt+1 + γQπ(st+1, at+1)

|st = s, at = a, at+1 ∼ π}

(5)

Because the agent always intends to maximize its ex-
pected return, it can be shown that in the optimal policy π∗,
the optimal Q-value of a given pair of state-action is:

Q∗(s, a) = Ep{Rt+1 + γmax
a′

Q∗(st+1, a
′)|st = s, at = a}

π∗(s) = max
a

Q∗(s, a)

(6)

The first equation in (6) is called the Bellman optimality
equation and is used to formulate RL algorithms such as the
Q-learning algorithm used in this paper.

To find the optimal Q-value function Q*(s, a), tabular
Q-learning algorithm [55] can be used. In conventional Q-
learning, assuming the state s is discrete, a table of Q-values
is initialized with random values for all possible (s, a) pairs.
At each time step, the Q-learning algorithm chooses actions,
based on the current Q, such that, over many time steps, all
actions are taken in all states. After taking an action a and
observing the reward r and new state s′, the action-value
table entry Q(s, a) is changed using the following temporal
difference rule:

Q(s, a) = (1− α)Q(s, a) + α[r + γmax
a′

Q(s′, a′)] (7)

The learning rate α can be reduced over time and
determines how well Q-learning will converge. With an
appropriate value of α, Q-learning converges to the optimal
Q-value function Q* and its corresponding optimal policy
π [55]. In the proposed DQL, we replace the Q-table with a
trained neural network, called Q-ANN. The design details
of DQL are presented below.

Design Space of the DQL: We formulate the design
space of the proposed DQL as follows:
State Space: We construct the state vector S with a set of
local NoC attributes for each router, which are observed at
each time step, as listed in Table. 1. These attributes include
input-link-related metrics, buffer-related metrics, output-
link-related metrics, and security metrics. According to the
range of each attribute, all of these attribute values are
discretized into several bins to limit the number of (s, a)
pairs. For example, link utilization is discretized into 5 lev-
els. We select these listed attributes because they represent
the traffic patterns and congestion-related NoC behaviors.
Moreover, global information, such as dimensional traffic
intensity, is not selected to reduce the overhead of collecting
the attribute values at runtime.
Action Space: The action space A = {a1,a2,a3} consists of the
three operation modes, as described in Sec. 4.1. Specifically,
a1 represents the Operation Mode 1, and a2 represents the
Operation Mode 2. a3 represents the Operation Mode 3.

TABLE 1
Attributes in the state vector.

Category Attributes Description
1. +X link utilization Flits/cycle of +X input port
2. –X link utilization Flits/cycle of –X input port
3. +Y link utilization Flits/cycle of +Y input port
4. –Y link utilization Flits/cycle of –Y input port

Router Input
Related Metrics

5. Local port injection rate Injection rate in flit/cycle
6. +X buffer utilization Number of utilized buffers at +X input port
7. –X buffer utilization Number of utilized buffers at –X input port
8. +Y buffer utilization Number of utilized buffers at +Y input port
9. –Y buffer utilization Number of utilized buffers at –Y input port

Buffer Related
Metrics

10. Local buffer utilization Number of utilized buffers at local input port
11. +X Link utilization Output flits/cycle of +X output port
12. –X Link utilization Output flits/cycle of –X output port
13. +Y Link utilization Output flits/cycle of +Y output port
14. –Y Link utilization Output flits/cycle of –Y output port

Router Output
Related Metrics

15. Local port link utilization Output flits/cycle of local output port
16. +X D-ANN result D-ANN label of +X downstream router
17. –X D-ANN result D-ANN label of –X downstream router
18. +Y D-ANN result D-ANN label of +Y downstream router
19. –Y D-ANN result D-ANN label of –Y downstream router

Security Related
Metrics

20. Local D-ANN result D-ANN label of local router

Reward Function: At time step t for router i, the immediate
reward function is designed as:

ri,t = − loga (Latencyi,t)− logb (Poweri,t) (8)

The Latency is the network latency of router i, which is
the average end-to-end packet latency calculated by the
average timing difference between the packet injections and
ejections within the time step. The Power refers to the
average power consumption that equals the summation of
the static and dynamic power consumption monitored by
the NoC’s shared power module. The coefficients a and b
adjust which one is the prior optimization objective over
the other. In this paper, both a and b are set to 2.

The Working of DQL: In DQL, a Q(s, a) value is used
to estimate the long-term return of taking a specific action.
The Q-value is defined as:

Q (s, a) = (1− α)Q (s, a) + α
[
r + γmax

a′
Q (s′, a′)

]
(9)

The value maxQ (s′, a′) represents the maximum Q-value
in the state entry s′, which is obtained at the beginning of
the following time step. The coefficient α is the learning rate
of DQL. It determines how much the intermediate reward
impacts the expectation of the long-term return. It is also
noteworthy that the selection of the learning rate α also
impacts the convergence time of DQL and the performance
of the trained policy. A detailed discussion of how the coef-
ficients impact system performance is presented in Sec. 5.4.

In the proposed design, the Q-values are calculated by
an artificial neural network, called Q-ANN, at runtime. In
this paper, each Q-ANN consists of an input layer with 20
neurons, a hidden layer with 30 neurons, and an output
layer with 3 neurons. The input layer represents the selected
NoC attributes, while the output layer includes the Q-
values of the three possible actions to take. The hidden
layer and weights in the Q-ANN record the correlation
between the observed state and the corresponding Q-values.
This eliminates the excessive area overhead of conventional
designs [50], [56] that store the Q-values in state-action
mapping tables.

Fig.4 shows the working of the proposed DQL-based
control policy during the execution of an application. First,
all Q-values are initialized to 0, and the operation modes for
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Fig. 4. Deep-Q-learning process. At time step t, the router observes the
state, and the action with the maximum Q-value for the current state is
selected. Thereafter, the reward for r(s, a) is calculated, and the Q-value
is updated following (9).

all routers are set to Operation Mode 2. At each time step,
the DQL process consists of a number of stages, as shown
in Fig. 4. At stage 1 , the DQL agent (router) monitors
the values of runtime NoC attributes F1, F2, ..., F20. These
attribute values together formulate a state vector sx, which
is the current state vector for the DQL agent. In conventional
Q-learning, a Q-table is used to map the state vector sx to
the Q-values of all possible actions. In the proposed DQL,
we replace the Q-table with a trained neural network, Q-
ANN. In the proposed DQL design, these values, or the
state vector, are fed into the Q-ANN’s input layer. The Q-
values of all possible actions for sx are calculated by the Q-
ANN. Afterwards, at stage 2 , the router selects an action a
that has the highest Q-value from the three possible actions.
The selected action will be deployed at the next time step
(for example, a2). At the following time step, at stage 3 , as
the router takes the selected action a2, the router interacts
with the entire NoC system, which result in a transition to
a new state s’. Meanwhile, the NoC performance metrics
(i.e., network latency and power consumption) are captured,
and a reward r is calculated. The reward will be used in
the temporal difference rule shown in (9) to update Q(s, a).
Each router will go through the three stages at each time
step. Note that stage 3 can be skipped when the Q-ANN
is stable and converged. In the proposed design, we use
an offline-training process, therefore the Q-value updating
stage is only used for training and does not exist in the
inference phase. The offline-training process is described
below.

Training and Testing Phases of the Proposed DQL: In
this paper, we first train the proposed DQL offline with
GEM5 [29] simulator with a set of synthetic traffics and
real applications from the PARSEC benchmark (blk, dedup,
fre, and swa). At first, Q-values for all possible (s, a) pairs
are initialized to zero. During the training phase, a subset
of PARSEC benchmark applications and synthetic traffic
are executed using GEM5, and the dynamic interactions
between the routers and the entire NoC system are recorded.
The router observes the current sx at each time step and
selects an action that has the highest Q-value for the specific
sx. If several actions are with the same Q-values, a random

action will be selected. As we designed the reward using
a negative log-function, all of the visited state-action pairs
have negative Q-values, while the Q-values for all the
unvisited (s, a) pairs are zero. Therefore, the DQL agents
are forced to explore new (s, a) pairs at the early stage of
the training process. Moreover, an exploration factor ϵ [50],
[56] is used to allow each router to take a random action
with a small probability of ϵ at each time step. This fur-
ther increases the exploration of DQL to avoid sub-optimal
decisions. Upon taking the action, the router observes a
new state and the variation of system performance metrics.
During this process, the Q-ANN uses the attribute values of
the state vector as inputs of the input layer, and the outputs
of the Q-ANN are the Q-values. The Q-ANN uses (9) to
calculate the difference ∆Q at each time step. ∆Q is then
be fed to the mini-batch gradient descent as the error of D-
ANN output. A back-propagation is deployed to update the
weights in the hidden layer.

The offline-trained model is capable of being applied
to different applications without a new training procedure.
Specifically, the proposed training process uses a number
of synthetic traffic and carefully selected real applications
from the PARSEC benchmark (blk, dedup, fre, and swa) to
abstract a wide range of data and traffic patterns to compre-
hensively cover the communication behaviors. These traffic
patterns are captured by the NoC attributes and can cover as
many common communication patterns in the testing phase.
The proposed DQL makes decisions only rely on the cap-
tured communication patterns, or observed attribute values,
regardless of what specific application is used. Therefore,
the trained model can be directly utilized without retraining,
as the dynamic behaviors of the testing application can also
be destructed into the communication patterns captured by
the trained model.

The trained ANN will be implemented in the routers for
testing, without further updating to reduce computational
overheads. In this paper, since we only focus on fault injec-
tion HTs, the training result is acceptable as long as the ANN
can distinguish injected faults and apply suitable security
mechanisms based on the NoC attributes. Therefore, there
is no need to retrain the ANN for different applications.
In the testing phase, the DQL agent observes the attribute
values, calculates three Q-values, and selects the action that
has the highest Q-value. The timing and area overheads of
the proposed DQL are presented in Sec. 5.5.

5 EXPERIMENTAL RESULTS

5.1 Simulation Setup
We evaluate the proposed SecureNoC design using the
GEM5 full-system simulator [29], in which we fully incor-
porate the HT attack models and security techniques. Table
2 describes the simulation parameters used.

Before evaluation, we first train the proposed D-ANN
and DQL (Q-ANN) using synthetic traffic and real appli-
cations that are different from the testing data set. The Q-
values are initialized to 0. The learning rate α and the dis-
count rate γ are set to 0.1 and 0.9, respectively. Additionally,
the DQL agents have a small probability of ϵ = 0.05 to select
a random action for exploring unvisited state-action pairs.
The trained D-ANN and Q-ANN will be implemented in
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TABLE 2
Simulation environment setup.

Field Value
Processing Units 64 CPU Cores @ 32 nm, 1.0V/2.0GHz
NoC Configuration 8 × 8 2D Mesh network,

4-stage router
Packet Parameter 128-bit per flit, 4 flits per packet
Access Delay 4 cycles to L1 cache (64KB)
(cycle) 8 cycles to L2 cache (8MB)

160 cycles to main memory
Baseline:
FHL [3]+ AES [57] + isolation
FHL [3] + AES [57] + NIBR [12]

Techniques D-ANN + AES [57] + NIBR [12]
D-ANN + SPK + NIBR [12]
Proposed SecureNoC Design:
D-ANN + SPK + MBC/DQL

each router for the testing phase. Subsequently, we ran-
domly select 6 routers in the NoC to be HT-infected routers.
At runtime, these HT-infected routers can inject packets that
cause over 70% link and buffer utilization.

During the testing phase, the PARSEC benchmark
suite [58] is tested, with the time step length set to be
5000 cycles. Each router is initialized to use operation mode
2. The performance of the proposed SecureNoC design is
compared to four other solutions, which are listed in Ta-
ble 2. Note that the Proposed SecureNoC design using MBC
replaces half of the router buffers. or VC buffers, with the
proposed reconfigurable channel buffers. Specifically, in all
other techniques listed in Table 2, each input port has a total
of 16 VC buffers, while SecureNoC has 8 channel buffers
and 8 VC buffers for each port. This allows a fair comparison
across all techniques. The testing phase for each benchmark
application lasts for the full execution time of each appli-
cation. We evaluate the area and power consumption with
Synopsys. The value of power consumption refers to the
summary of NoC static power and dynamic power using
Synopsys and DSENT, respectively. Specifically, We first
modeled the static power of all components with Synopsys.
Afterward, the modeled parameters are fed to the power
model of GEM5 (DSENT). At runtime, during the execution
of different PARSEC applications, DSENT calculates the
dynamic power consumption by monitoring NoC activities
(i.e., buffer-writes, crossbar, virtual channel and switch, D-
ANN calculations, and DQL agent activation).

5.2 Performance Analysis
Speedup: We calculate the speedup by comparing the
full-application execution time of each benchmark appli-
cation when using a selected technique (FHL+AES+NIBR,
D-ANN+AES+NIBR, D-ANN+SPK+NIBR, or the proposed
SecureNoC) against the execution time when using the
baseline technique, as shown as the following equation:

Speedup =
ExecutionT imebaseline
ExecutionT imetechnique

(10)

Since we use offline training, the training time is not in-
cluded in the execution time above. The simulation result is
shown in Fig. 5.

As can be seen in Fig. 5, simply deploying the NIBR
technique for HT mitigation has limited speedup because
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of the limited throughput. SecureNoC achieves an average
of 21% speedup over the baseline, due to its capability
of selectively applying data protection mechanisms. The
results are showing similar trends across all applications
because the majority of the execution time comes from the
computational overheads of the encryption methods. The
use of D-ANN improves the execution time since FHL can
induce more false-negatives, which can result in more HT-
injected faults and retransmission traffic. However, as the
routers can be idle, which means the traffic intensity is
not always high during the execution, the differences in
speedups of using different techniques are not as significant
as they are shown in the rest metrics (latency, power, and
energy).
Network Latency: We evaluate network latency using the
average end-to-end packet latency, as shown in Fig. 6.
It can be seen, as compared to the baseline, the use of
FHL+AES+NIBR and D-ANN+AES+NIBR achieve 6% and
12% end-to-end latency reduction, respectively, because
NIBR and AES induce computing overheads during encryp-
tion and routing computation, respectively. However, it can
be indicated that even though the routing algorithms NIBR
have longer computation time, they still benefit the overall
network latency, because network irregularity is avoided.
SecureNoC achieves 39% end-to-end latency reduction on
average, thanks to the use of the lightweight encryption
method and better-utilized network resources during packet
transmission. The comparison between D-ANN+SPK+NIBR
and SecureNoC justifies the benefit of using DQL for HT
mitigation. It shows that the machine learning-based solu-
tion (DQL) achieves 27% end-to-end latency reduction, as
SecureNoC can adapt to different traffic loads and proac-
tively deploy the most suitable operation modes.
Static Power Consumption: We evaluate the static
power consumption as shown in Fig. 7. It is shown
that FHL+AES+NIBR and D-ANN+AES+NIBR increase the
static power consumption, as compared to the baseline,
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Fig. 7. Static power consumption comparison, normalized to the base-
line (lower is better).
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Fig. 8. Dynamic power consumption comparison, normalized to the
baseline (lower is better).

because of the complex routing computation and hard-
ware implementation of the neural networks. The use of
SPK reduces the static power consumption by 12% due
to the simplified cryptography hardware. The proposed
SecureNoC using D-ANN, SPK, and MBC achieves 27%
static power reduction, due to the use of router power-
gating and replacing half of the power-consuming router
buffers with MBC channel buffers.
Dynamic Power Consumption: The dynamic power con-
sumption comparison is shown in Fig. 8. It can be seen that
FHL+AES+NIBR achieves the least dynamic power reduc-
tion due to the complex AES computation and routing com-
putation. The use of SPK eliminates the complex compu-
tation of AES and achieves dynamic power reduction. The
proposed SecureNoC achieves the highest dynamic power
consumption reduction, which equals 36%. The dynamic
power reduction of the proposed design is achieved by the
use of channel buffers, as well as reducing the computation
of data encryption.
Energy Consumption: We define energy consumption as:

Energy =
(
Pstatic + Pdynamic

)
× Texec (11)

Pstatic and Pdynamic are static and dynamic power con-
sumption, respectively. Texec is the execution time of each
benchmark application. Fig. 9 shows the energy consump-
tion of all applications using different techniques. It shows
that SecureNoC reduces energy consumption by 46%, which
outperforms other techniques with no machine learning.
This is because SecureNoC can improve both static and
dynamic power consumption, as shown previously.

5.3 Security Analysis
HT Detection Accuracy: The HT detection accuracy is cal-
culated with the ratio of the number of correctly identified
HT-infected routers within one time step. Fig. 10(a) shows
that the proposed D-ANN achieves 96% accuracy with 30
and more neurons in the hidden layer. With high detection
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Fig. 9. Energy consumption comparison, normalized to the baseline
(lower is better).

accuracy, security threats can be efficiently mitigated using
the proposed security techniques.
Data Protection Analysis: The proposed SecureNoC design
first enhances security with MBC. Similar to previous de-
signs [11], [12], our design provides non-interference packet
transmissions that can prevent sensitive information leakage
via the covert channels induced by HTs. We then propose
SPK for data protection. The security of transmitted data
is preserved by the (t, n) threshold discussed in Sec.3.3.
As long as the intermediate router cannot gather t secret
shadows, the original message will not be recovered. In our
design, the SPK protects transmitted packets that have HT-
free source and destination routers. Our design ensures that
only the source and destination routers can gather sufficient
secret shadows and construct the encryption key. In this
case, intermediate routers can only covertly gather (t − 1)
secret shadows in maximum. Moreover, the proposed HT
detection ensures that the HT-infected routers are not au-
thorized to encrypt/decrypt data or gather secret shadows
when they are the source or destination routers. Therefore,
HT-infected routers have minimal chances to retrieve the
public key. Additionally, the keys used in SPK are changed
at each time step for security.

Therefore, our approach can achieve secure on-chip com-
munication by accurately detecting and mitigating HTs, as
well as providing data encryption with protected secret
keys.

5.4 Sensitivity Study

Impact of the Hidden Layer Size of D-ANN: We study
the impact of the hidden layer size of D-ANN on the
detection accuracy by varying the number of the hidden
layer neurons, as shown in Fig. 10(a). Fig. 10(a) shows that
implementing more neurons in the hidden layer results in
higher D-ANN detection accuracy. It also can be indicated
that a single-hidden-layer construction performs better than
multi-hidden-layer construction because the former design
can mitigate overfitting and is sufficient to deliver the
desired accuracy. Therefore, in this paper, we use a single-
hidden-layer design with 30 neurons in the hidden layer.
Impact of Time Step Length: Fig. 10(b) shows the impact of
time step length on overall performance, where we run the
evaluation tests with the time step set to 2000,5000, 10000,
50000, and 100000 clock cycles, respectively. As shown in
Fig. 10(b), the proposed DQL control policy using a 5000-
cycle time step achieves the best network latency and energy
consumption. That is because a shorter time step, even
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Fig. 10. Impact of (a) hidden layer size, (b) time step length, (c) discount rate γ, and (d) exploration factor ϵ of DQL on network performance metrics.

though it provides finer-grain control, can lead to perfor-
mance degradation (as the timing and power overheads of
DQL computation are more pronounced), while a longer
time step only provides coarse-grain control.
Impact of Discount Rate γ : As discussed in Sec. 4.2, the
discount rate γ determines the impact of future rewards on
the total return. In this test, we varied the value of γ to
find out the most suitable γ for SecureNoC, as shown in
Fig. 10(c). As shown in Fig. 10(c), the highest performance
improvement is achieved with γ is set to 0.9. This is because
a smaller γ can lead to a near-sighted control policy, which
cannot provide long-term benefits, while a larger γ can
lead to convergence failure thus resulting in performance
degradation.
Impact of Exploration Factor ϵ : The exploration factor
ϵ, which can be set to values from 0 to 1, indicates how
often the DQL agent explores unvisited state-action pairs
regardless of the Q-values. In this test, we explore how ϵ can
impact system performance, which is shown in Fig. 10(d).
As can be seen in Fig. 10(d), SecureNoC achieves the lowest
network latency and energy consumption when ϵ is 0.05.
The reason is that when ϵ equals 0, the DQL agent always
selects the action with the highest Q-value, which can lead
to local optima or sub-optimal decision making. With a
non-zero ϵ, the DQL starts to explore unvisited S-A pairs
and avoid local optima. However, aggressively increasing ϵ
will result in an unstable control policy where DQL agents
frequently take actions randomly instead of selecting the
most suitable actions.

5.5 Overhead Analysis
We evaluate the overheads of the proposed SecureNoC de-
sign in the following aspects: timing, chip area, and power.
Specifically, the timing overhead is obtained by GEM5,
while the offline training time is not included. The chip area
and static power consumption are evaluated using Synop-
sys Design Vision software with 32nm technology. Note that
dynamic power consumption is application-specific, and it
is not considered a portion of the power overhead.

Timing Overhead: The timing overhead is induced by
D-ANN and DQL during the testing phase. The timing
overhead is the latency used for output computation. In the
worst case, the computation overheads of D-ANN and DQL
are 60 and 100 cycles, respectively. To avoid the potential
negative impact on network performance, we use two sets of
different time steps for attribute monitoring and controlling.
The two sets of time steps are offset by the ANN computa-
tion time which can pipeline the overhead effectively. By

doing so, the calculation of ANNs does not block either the
monitoring or the controlling. Therefore, the use of ANN
will not negatively impact the overall performance.

Area and Power Overhead: In SecureNoC, for each router,
the proposed bypass channel which is comprised of links
and simple switches consumes 3350 µm2 area. The pro-
posed D-ANN and DQL consume additional 1364 µm2

area for ALUs and 2290 µm2 area for SRAM. Furthermore,
the power overhead of the learning-based logics (D-ANN
and DQL) is 0.33mw. For data encryption hardware, com-
pared to the 4335 µm2 area that the conventional AES
consumes, the proposed on-demand light-weight data en-
cryption method consumes 1169 µm2 area. However, these
overheads can be partially offset by replacing half of the
router buffers with channel buffers, which implies 7485 µm2

area reduction.

6 RELATED WORK

Researchers have proposed several techniques tackling HT
attacks in NoCs [3]–[5], [10]–[14], [16]–[24], [43], [59]. For
threat detection, built-in diagnosis hardware [5] periodically
checks the correctness of the circuitry’s logic operations
and stalls the application execution during the diagnosis.
FHL [3] and runtime monitoring [60], [61] dynamically
monitor selected NoC attributes to capture abnormalities
in NoC behaviors. For HT mitigation, SurfNoC [11] elimi-
nates the transmissions between high-security domains by
alternatively reserving and scheduling transmission chan-
nels in each dimension exclusively for a specific domain.
NIBR [12] partitions the virtual channels of each router
to transmit high-security data flows (that requires HT-free
components) and low-security data flows (that allows HT-
infected components) exclusively. In the data encryption
aspect, conventional DES [26] and AES [27], [57] consist
of complex computations and multiple encryption rounds
to protect encrypted data from revealed by malicious at-
tackers. However, the conventional DES and AES can be
time-consuming and potentially vulnerable to side-channel
attacks [43], [62]. To address these problems, simplified
encryption methods [15] and trace masking techniques [43],
[59], [63] are proposed, respectively. Fault tolerance designs
(e.g. SECDED [64], [65], load-balancing [66], thermal aware
routing [67], etc.) can mitigate the transient errors in the
packet, yet the HTs can still generate excessive faults and
incur retransmission traffic to congest the network. If the
HTs are not detected and mitigated, the retransmission
traffic can saturate network resources and induce network
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congestion, which leads to longer delays and excessive
power consumption [68]–[70].

Machine learning techniques have been used in recent
NoC designs to balance design trade-offs. These works
tackle the challenges of enhancing network performance,
improving NoC power, and mitigating errors [32], [35], [36],
[52], [71]–[76]. SecureNoC differs from the previous designs
by presenting accurate runtime HT detection, an efficient
threat mitigation mechanism that fully utilizes network
resources to improve network performance and power, and
an on-demand light-weight data protection technique with
minimized overhead.

7 CONCLUSIONS

We propose SecureNoC, a learning-enabled framework with
architectural innovations and algorithm designs to enhance
NoC security, performance, and power consumption holis-
tically. We propose a learning-based threat detector in each
router for accurate run-time HT detection. Using the de-
tection results, the HT-infected routers are isolated, while
packets with high security demands are propagated us-
ing the proposed multi-function bypass channels (MBCs)
with reduced power and improved throughput. For data
protection, we propose a lightweight dynamic encryption
method that adapts to the diverse traffic patterns and secu-
rity demands with minimized overhead. Additionally, we
propose a deep-Q-learning (DQL)-based policy to handle
the dynamic interactions and balance the trade-offs among
the proposed techniques. Simulation results show that, as
compared to current NoC security techniques, SecureNoC
achieves 36% improved HT detection accuracy, reduces
end-to-end packet latency by 39%, and decreases energy
consumption by 46%. In this paper, we demonstrate the am-
plifying and synergistic effects of integrating architectural
innovations with machine learning in a holistic approach to
NoC design. In the future, we will expand the design space
and focus on protecting the multicore system against broad
attack models, which span hardware Trojan attacks, denial-
of-service attacks, side-channel attacks, and other attacks on
both on-chip and off-chip communications, with hardware
innovations and algorithm enhancements.
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